BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35606571)

  • 1. Multi-faceted approaches for breeding nutrient-dense, disease-resistant, and climate-resilient crop varieties for food and nutritional security.
    Mir RR; Rustgi S; Zhang YM; Xu C
    Heredity (Edinb); 2022 Jun; 128(6):387-390. PubMed ID: 35606571
    [No Abstract]   [Full Text] [Related]  

  • 2. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops.
    Kumar J; Kumar A; Sen Gupta D; Kumar S; DePauw RM
    Heredity (Edinb); 2022 Jun; 128(6):473-496. PubMed ID: 35249099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate change challenges plant breeding.
    Xiong W; Reynolds M; Xu Y
    Curr Opin Plant Biol; 2022 Dec; 70():102308. PubMed ID: 36279790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redesigning crop varieties to win the race between climate change and food security.
    Pixley KV; Cairns JE; Lopez-Ridaura S; Ojiewo CO; Dawud MA; Drabo I; Mindaye T; Nebie B; Asea G; Das B; Daudi H; Desmae H; Batieno BJ; Boukar O; Mukankusi CTM; Nkalubo ST; Hearne SJ; Dhugga KS; Gandhi H; Snapp S; Zepeda-Villarreal EA
    Mol Plant; 2023 Oct; 16(10):1590-1611. PubMed ID: 37674314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can genomics deliver climate-change ready crops?
    Varshney RK; Singh VK; Kumar A; Powell W; Sorrells ME
    Curr Opin Plant Biol; 2018 Oct; 45(Pt B):205-211. PubMed ID: 29685733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Features and applications of haplotypes in crop breeding.
    Bhat JA; Yu D; Bohra A; Ganie SA; Varshney RK
    Commun Biol; 2021 Nov; 4(1):1266. PubMed ID: 34737387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective.
    Muthamilarasan M; Singh NK; Prasad M
    Adv Genet; 2019; 103():1-38. PubMed ID: 30904092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancing designer crops for climate resilience through an integrated genomics approach.
    Mohd Saad NS; Neik TX; Thomas WJW; Amas JC; Cantila AY; Craig RJ; Edwards D; Batley J
    Curr Opin Plant Biol; 2022 Jun; 67():102220. PubMed ID: 35489163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QTLian breeding for climate resilience in cereals: progress and prospects.
    Choudhary M; Wani SH; Kumar P; Bagaria PK; Rakshit S; Roorkiwal M; Varshney RK
    Funct Integr Genomics; 2019 Sep; 19(5):685-701. PubMed ID: 31093800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics.
    Marsh JI; Hu H; Gill M; Batley J; Edwards D
    Theor Appl Genet; 2021 Jun; 134(6):1677-1690. PubMed ID: 33852055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring natural selection to guide breeding for agriculture.
    Henry RJ; Nevo E
    Plant Biotechnol J; 2014 Aug; 12(6):655-62. PubMed ID: 24975385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large potential for crop production adaptation depends on available future varieties.
    Zabel F; Müller C; Elliott J; Minoli S; Jägermeyr J; Schneider JM; Franke JA; Moyer E; Dury M; Francois L; Folberth C; Liu W; Pugh TAM; Olin S; Rabin SS; Mauser W; Hank T; Ruane AC; Asseng S
    Glob Chang Biol; 2021 Aug; 27(16):3870-3882. PubMed ID: 33998112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of crop wild relative species identifies areas globally for in situ conservation.
    Vincent H; Amri A; Castañeda-Álvarez NP; Dempewolf H; Dulloo E; Guarino L; Hole D; Mba C; Toledo A; Maxted N
    Commun Biol; 2019; 2():136. PubMed ID: 31044161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies.
    Razzaq A; Wani SH; Saleem F; Yu M; Zhou M; Shabala S
    J Exp Bot; 2021 Sep; 72(18):6123-6139. PubMed ID: 34114599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global agricultural intensification during climate change: a role for genomics.
    Abberton M; Batley J; Bentley A; Bryant J; Cai H; Cockram J; de Oliveira AC; Cseke LJ; Dempewolf H; De Pace C; Edwards D; Gepts P; Greenland A; Hall AE; Henry R; Hori K; Howe GT; Hughes S; Humphreys M; Lightfoot D; Marshall A; Mayes S; Nguyen HT; Ogbonnaya FC; Ortiz R; Paterson AH; Tuberosa R; Valliyodan B; Varshney RK; Yano M
    Plant Biotechnol J; 2016 Apr; 14(4):1095-8. PubMed ID: 26360509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven, participatory characterization of farmer varieties discloses teff breeding potential under current and future climates.
    Woldeyohannes AB; Iohannes SD; Miculan M; Caproni L; Ahmed JS; de Sousa K; Desta EA; Fadda C; Pè ME; Dell'Acqua M
    Elife; 2022 Sep; 11():. PubMed ID: 36052993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments.
    Prasanna BM; Cairns JE; Zaidi PH; Beyene Y; Makumbi D; Gowda M; Magorokosho C; Zaman-Allah M; Olsen M; Das A; Worku M; Gethi J; Vivek BS; Nair SK; Rashid Z; Vinayan MT; Issa AB; San Vicente F; Dhliwayo T; Zhang X
    Theor Appl Genet; 2021 Jun; 134(6):1729-1752. PubMed ID: 33594449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crop breeding for a changing climate in the Pannonian region: towards integration of modern phenotyping tools.
    Kondić-Špika A; Mikić S; Mirosavljević M; Trkulja D; Marjanović Jeromela A; Rajković D; Radanović A; Cvejić S; Glogovac S; Dodig D; Božinović S; Šatović Z; Lazarević B; Šimić D; Novoselović D; Vass I; Pauk J; Miladinović D
    J Exp Bot; 2022 Sep; 73(15):5089-5110. PubMed ID: 35536688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerating Climate Resilient Plant Breeding by Applying Next-Generation Artificial Intelligence.
    Harfouche AL; Jacobson DA; Kainer D; Romero JC; Harfouche AH; Scarascia Mugnozza G; Moshelion M; Tuskan GA; Keurentjes JJB; Altman A
    Trends Biotechnol; 2019 Nov; 37(11):1217-1235. PubMed ID: 31235329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conquering compacted soils: uncovering the molecular components of root soil penetration.
    Bello-Bello E; López-Arredondo D; Rico-Chambrón TY; Herrera-Estrella L
    Trends Plant Sci; 2022 Aug; 27(8):814-827. PubMed ID: 35525799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.