These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35606571)

  • 21. Active and adaptive plasticity in a changing climate.
    Brooker R; Brown LK; George TS; Pakeman RJ; Palmer S; Ramsay L; Schöb C; Schurch N; Wilkinson MJ
    Trends Plant Sci; 2022 Jul; 27(7):717-728. PubMed ID: 35282996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Horticulture crop under pressure: Unraveling the impact of climate change on nutrition and fruit cracking.
    Manzoor MA; Xu Y; Lv Z; Xu J; Shah IH; Sabir IA; Wang Y; Sun W; Liu X; Wang L; Liu R; Jiu S; Zhang C
    J Environ Manage; 2024 Apr; 357():120759. PubMed ID: 38554453
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epigenetic approaches to crop breeding: current status and perspectives.
    Dalakouras A; Vlachostergios D
    J Exp Bot; 2021 Jul; 72(15):5356-5371. PubMed ID: 34017985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetics and breeding for climate change in Orphan crops.
    Kamenya SN; Mikwa EO; Song B; Odeny DA
    Theor Appl Genet; 2021 Jun; 134(6):1787-1815. PubMed ID: 33486565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advocating a need for suitable breeding approaches to boost integrated pest management: a European perspective.
    Lamichhane JR; Arseniuk E; Boonekamp P; Czembor J; Decroocq V; Enjalbert J; Finckh MR; Korbin M; Koppel M; Kudsk P; Mesterhazy A; Sosnowska D; Zimnoch-Guzowska E; Messéan A
    Pest Manag Sci; 2018 Jun; 74(6):1219-1227. PubMed ID: 29205815
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Progenitor species hold untapped diversity for potential climate-responsive traits for use in wheat breeding and crop improvement.
    Leigh FJ; Wright TIC; Horsnell RA; Dyer S; Bentley AR
    Heredity (Edinb); 2022 May; 128(5):291-303. PubMed ID: 35383318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The application of genomics and bioinformatics to accelerate crop improvement in a changing climate.
    Batley J; Edwards D
    Curr Opin Plant Biol; 2016 Apr; 30():78-81. PubMed ID: 26926905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing crop diversity for food security in the face of climate uncertainty.
    Zsögön A; Peres LEP; Xiao Y; Yan J; Fernie AR
    Plant J; 2022 Jan; 109(2):402-414. PubMed ID: 34882870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beyond a reference genome: pangenomes and population genomics of underutilized and orphan crops for future food and nutrition security.
    Chapman MA; He Y; Zhou M
    New Phytol; 2022 Jun; 234(5):1583-1597. PubMed ID: 35318683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation.
    Kromdijk J; Long SP
    Proc Biol Sci; 2016 Mar; 283(1826):20152578. PubMed ID: 26962136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seeking Crops with Balanced Parts for the Ideal Whole.
    Abbai R; Singh VK; Snowdon RJ; Kumar A; Schnurbusch T
    Trends Plant Sci; 2020 Dec; 25(12):1189-1193. PubMed ID: 32958388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Innovative plant breeding could deliver crop revolution.
    Anders S; Pareek A; Singla-Pareek SL; Gupta KJ; Foyer CH
    Nature; 2020 Jan; 577(7792):622. PubMed ID: 31992889
    [No Abstract]   [Full Text] [Related]  

  • 33. A chromosome-level Amaranthus cruentus genome assembly highlights gene family evolution and biosynthetic gene clusters that may underpin the nutritional value of this traditional crop.
    Ma X; Vaistij FE; Li Y; Jansen van Rensburg WS; Harvey S; Bairu MW; Venter SL; Mavengahama S; Ning Z; Graham IA; Van Deynze A; Van de Peer Y; Denby KJ
    Plant J; 2021 Jul; 107(2):613-628. PubMed ID: 33960539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Breeding crops for improved mineral nutrition under climate change conditions.
    Pilbeam DJ
    J Exp Bot; 2015 Jun; 66(12):3511-21. PubMed ID: 25614661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.
    Kujur A; Saxena MS; Bajaj D; Laxmi ; Parida SK
    J Biosci; 2013 Dec; 38(5):971-87. PubMed ID: 24296899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Winged bean (Psophocarpus tetragonolobus (L.) DC.) for food and nutritional security: synthesis of past research and future direction.
    Tanzi AS; Eagleton GE; Ho WK; Wong QN; Mayes S; Massawe F
    Planta; 2019 Sep; 250(3):911-931. PubMed ID: 30911885
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Navigating complexity to breed disease-resistant crops.
    Nelson R; Wiesner-Hanks T; Wisser R; Balint-Kurti P
    Nat Rev Genet; 2018 Jan; 19(1):21-33. PubMed ID: 29109524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designing Future Crops: Genomics-Assisted Breeding Comes of Age.
    Varshney RK; Bohra A; Yu J; Graner A; Zhang Q; Sorrells ME
    Trends Plant Sci; 2021 Jun; 26(6):631-649. PubMed ID: 33893045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hotter, drier, CRISPR: the latest edit on climate change.
    Massel K; Lam Y; Wong ACS; Hickey LT; Borrell AK; Godwin ID
    Theor Appl Genet; 2021 Jun; 134(6):1691-1709. PubMed ID: 33420514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Breeding crops for climate resilience.
    Langridge P; Braun H; Hulke B; Ober E; Prasanna BM
    Theor Appl Genet; 2021 Jun; 134(6):1607-1611. PubMed ID: 34046700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.