These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 35606725)
1. A multivariate multi-step LSTM forecasting model for tuberculosis incidence with model explanation in Liaoning Province, China. Yang E; Zhang H; Guo X; Zang Z; Liu Z; Liu Y BMC Infect Dis; 2022 May; 22(1):490. PubMed ID: 35606725 [TBL] [Abstract][Full Text] [Related]
2. The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China. Zhao D; Zhang H; Cao Q; Wang Z; He S; Zhou M; Zhang R PLoS One; 2022; 17(2):e0262734. PubMed ID: 35196309 [TBL] [Abstract][Full Text] [Related]
3. Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China. Zhang R; Song H; Chen Q; Wang Y; Wang S; Li Y PLoS One; 2022; 17(1):e0262009. PubMed ID: 35030203 [TBL] [Abstract][Full Text] [Related]
4. Application of a long short-term memory neural network: a burgeoning method of deep learning in forecasting HIV incidence in Guangxi, China. Wang G; Wei W; Jiang J; Ning C; Chen H; Huang J; Liang B; Zang N; Liao Y; Chen R; Lai J; Zhou O; Han J; Liang H; Ye L Epidemiol Infect; 2019 Jan; 147():e194. PubMed ID: 31364559 [TBL] [Abstract][Full Text] [Related]
5. A hybrid model for hand-foot-mouth disease prediction based on ARIMA-EEMD-LSTM. Wan Y; Song P; Liu J; Xu X; Lei X BMC Infect Dis; 2023 Dec; 23(1):879. PubMed ID: 38102558 [TBL] [Abstract][Full Text] [Related]
6. Comparison of ARIMA and LSTM in Forecasting the Incidence of HFMD Combined and Uncombined with Exogenous Meteorological Variables in Ningbo, China. Zhang R; Guo Z; Meng Y; Wang S; Li S; Niu R; Wang Y; Guo Q; Li Y Int J Environ Res Public Health; 2021 Jun; 18(11):. PubMed ID: 34200378 [TBL] [Abstract][Full Text] [Related]
7. Prediction of hepatitis E using machine learning models. Guo Y; Feng Y; Qu F; Zhang L; Yan B; Lv J PLoS One; 2020; 15(9):e0237750. PubMed ID: 32941452 [TBL] [Abstract][Full Text] [Related]
8. Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting. Xu D; Zhang Q; Ding Y; Zhang D Environ Sci Pollut Res Int; 2022 Jan; 29(3):4128-4144. PubMed ID: 34403057 [TBL] [Abstract][Full Text] [Related]
9. Comparison of ARIMA model, DNN model and LSTM model in predicting disease burden of occupational pneumoconiosis in Tianjin, China. Lou HR; Wang X; Gao Y; Zeng Q BMC Public Health; 2022 Nov; 22(1):2167. PubMed ID: 36434563 [TBL] [Abstract][Full Text] [Related]
10. Hybrid methodology for tuberculosis incidence time-series forecasting based on ARIMA and a NAR neural network. Wang KW; Deng C; Li JP; Zhang YY; Li XY; Wu MC Epidemiol Infect; 2017 Apr; 145(6):1118-1129. PubMed ID: 28115032 [TBL] [Abstract][Full Text] [Related]
11. Development and comparison of predictive models for sexually transmitted diseases-AIDS, gonorrhea, and syphilis in China, 2011-2021. Zhu Z; Zhu X; Zhan Y; Gu L; Chen L; Li X Front Public Health; 2022; 10():966813. PubMed ID: 36091532 [TBL] [Abstract][Full Text] [Related]
12. Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China. Liao Z; Zhang X; Zhang Y; Peng D Interdiscip Sci; 2019 Mar; 11(1):77-85. PubMed ID: 30734907 [TBL] [Abstract][Full Text] [Related]
13. Comparison of autoregressive integrated moving average model and generalised regression neural network model for prediction of haemorrhagic fever with renal syndrome in China: a time-series study. Wang YW; Shen ZZ; Jiang Y BMJ Open; 2019 Jun; 9(6):e025773. PubMed ID: 31209084 [TBL] [Abstract][Full Text] [Related]
14. Forecasting and analyzing influenza activity in Hebei Province, China, using a CNN-LSTM hybrid model. Li G; Li Y; Han G; Jiang C; Geng M; Guo N; Wu W; Liu S; Xing Z; Han X; Li Q BMC Public Health; 2024 Aug; 24(1):2171. PubMed ID: 39135162 [TBL] [Abstract][Full Text] [Related]
15. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population. Li Z; Wang Z; Song H; Liu Q; He B; Shi P; Ji Y; Xu D; Wang J Infect Drug Resist; 2019; 12():1011-1020. PubMed ID: 31118707 [No Abstract] [Full Text] [Related]
16. Applying SARIMA, ETS, and hybrid models for prediction of tuberculosis incidence rate in Taiwan. Kuan MM PeerJ; 2022; 10():e13117. PubMed ID: 36164599 [TBL] [Abstract][Full Text] [Related]
17. A hybrid model for tuberculosis forecasting based on empirical mode decomposition in China. Zhao R; Liu J; Zhao Z; Zhai M; Ren H; Wang X; Li Y; Cui Y; Qiao Y; Ren J; Chen L; Qiu L BMC Infect Dis; 2023 Oct; 23(1):665. PubMed ID: 37805543 [TBL] [Abstract][Full Text] [Related]
18. Study on the prediction effect of a combined model of SARIMA and LSTM based on SSA for influenza in Shanxi Province, China. Zhao Z; Zhai M; Li G; Gao X; Song W; Wang X; Ren H; Cui Y; Qiao Y; Ren J; Chen L; Qiu L BMC Infect Dis; 2023 Feb; 23(1):71. PubMed ID: 36747126 [TBL] [Abstract][Full Text] [Related]
19. Application of a hybrid model for predicting the incidence of tuberculosis in Hubei, China. Zhang G; Huang S; Duan Q; Shu W; Hou Y; Zhu S; Miao X; Nie S; Wei S; Guo N; Shan H; Xu Y PLoS One; 2013; 8(11):e80969. PubMed ID: 24223232 [TBL] [Abstract][Full Text] [Related]
20. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Shahid F; Zameer A; Muneeb M Chaos Solitons Fractals; 2020 Nov; 140():110212. PubMed ID: 32839642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]