These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 35606745)

  • 1. Experimental demonstration of tethered gene drive systems for confined population modification or suppression.
    Metzloff M; Yang E; Dhole S; Clark AG; Messer PW; Champer J
    BMC Biol; 2022 May; 20(1):119. PubMed ID: 35606745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance analysis of novel toxin-antidote CRISPR gene drive systems.
    Champer J; Kim IK; Champer SE; Clark AG; Messer PW
    BMC Biol; 2020 Mar; 18(1):27. PubMed ID: 32164660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A toxin-antidote CRISPR gene drive system for regional population modification.
    Champer J; Lee E; Yang E; Liu C; Clark AG; Messer PW
    Nat Commun; 2020 Feb; 11(1):1082. PubMed ID: 32109227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulations Reveal High Efficiency and Confinement of a Population Suppression CRISPR Toxin-Antidote Gene Drive.
    Zhu Y; Champer J
    ACS Synth Biol; 2023 Mar; 12(3):809-819. PubMed ID: 36825354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance characteristics allow for confinement of a CRISPR toxin-antidote gene drive for population suppression in a reaction-diffusion model.
    Zhang S; Champer J
    Proc Biol Sci; 2024 Jun; 291(2025):20240500. PubMed ID: 38889790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles.
    Yang E; Metzloff M; Langmüller AM; Xu X; Clark AG; Messer PW; Champer J
    G3 (Bethesda); 2022 May; 12(6):. PubMed ID: 35394026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular safeguarding of CRISPR gene drive experiments.
    Champer J; Chung J; Lee YL; Liu C; Yang E; Wen Z; Clark AG; Messer PW
    Elife; 2019 Jan; 8():. PubMed ID: 30666960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR Gene Drive Efficiency and Resistance Rate Is Highly Heritable with No Common Genetic Loci of Large Effect.
    Champer J; Wen Z; Luthra A; Reeves R; Chung J; Liu C; Lee YL; Liu J; Yang E; Messer PW; Clark AG
    Genetics; 2019 May; 212(1):333-341. PubMed ID: 30918006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evading resistance to gene drives.
    Gomulkiewicz R; Thies ML; Bull JJ
    Genetics; 2021 Feb; 217(2):. PubMed ID: 33724420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Germline Cas9 promoters with improved performance for homing gene drive.
    Du J; Chen W; Jia X; Xu X; Yang E; Zhou R; Zhang Y; Metzloff M; Messer PW; Champer J
    Nat Commun; 2024 May; 15(1):4560. PubMed ID: 38811556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A confinable home-and-rescue gene drive for population modification.
    Kandul NP; Liu J; Bennett JB; Marshall JM; Akbari OS
    Elife; 2021 Mar; 10():. PubMed ID: 33666174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of distant-site rescue elements for CRISPR toxin-antidote gene drives.
    Chen J; Xu X; Champer J
    Front Bioeng Biotechnol; 2023; 11():1138702. PubMed ID: 36860883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A homing rescue gene drive with multiplexed gRNAs reaches high frequency in cage populations but generates functional resistance.
    Hou S; Chen J; Feng R; Xu X; Liang N; Champer J
    J Genet Genomics; 2024 Aug; 51(8):836-843. PubMed ID: 38599514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9-based split homing gene drive targeting
    Yadav AK; Butler C; Yamamoto A; Patil AA; Lloyd AL; Scott MJ
    Proc Natl Acad Sci U S A; 2023 Jun; 120(25):e2301525120. PubMed ID: 37307469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tethered homing gene drives: A new design for spatially restricted population replacement and suppression.
    Dhole S; Lloyd AL; Gould F
    Evol Appl; 2019 Sep; 12(8):1688-1702. PubMed ID: 31462923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inherently confinable split-drive systems in Drosophila.
    Terradas G; Buchman AB; Bennett JB; Shriner I; Marshall JM; Akbari OS; Bier E
    Nat Commun; 2021 Mar; 12(1):1480. PubMed ID: 33674604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can CRISPR-Based Gene Drive Be Confined in the Wild? A Question for Molecular and Population Biology.
    Marshall JM; Akbari OS
    ACS Chem Biol; 2018 Feb; 13(2):424-430. PubMed ID: 29370514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling homing suppression gene drive in haplodiploid organisms.
    Liu Y; Champer J
    Proc Biol Sci; 2022 Apr; 289(1972):20220320. PubMed ID: 35414240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and analysis of CRISPR-based underdominance toxin-antidote gene drives.
    Champer J; Champer SE; Kim IK; Clark AG; Messer PW
    Evol Appl; 2021 Apr; 14(4):1052-1069. PubMed ID: 33897820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling daisy quorum drive: A short-term bridge across engineered fitness valleys.
    de Haas FJH; Kläy L; Débarre F; Otto SP
    PLoS Genet; 2024 May; 20(5):e1011262. PubMed ID: 38753875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.