These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 35606821)

  • 1. Exhaustion of CAR T cells: potential causes and solutions.
    Kouro T; Himuro H; Sasada T
    J Transl Med; 2022 May; 20(1):239. PubMed ID: 35606821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chimeric Antigen Receptor T Cell Exhaustion during Treatment for Hematological Malignancies.
    Shen C; Zhang Z; Zhang Y
    Biomed Res Int; 2020; 2020():8765028. PubMed ID: 33150182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for Reducing Toxicity and Enhancing Efficacy of Chimeric Antigen Receptor T Cell Therapy in Hematological Malignancies.
    Wang H; Tang L; Kong Y; Liu W; Zhu X; You Y
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent findings on chimeric antigen receptor (CAR)-engineered immune cell therapy in solid tumors and hematological malignancies.
    Keshavarz A; Salehi A; Khosravi S; Shariati Y; Nasrabadi N; Kahrizi MS; Maghsoodi S; Mardi A; Azizi R; Jamali S; Fotovat F
    Stem Cell Res Ther; 2022 Sep; 13(1):482. PubMed ID: 36153626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tonic-signaling chimeric antigen receptors drive human regulatory T cell exhaustion.
    Lamarche C; Ward-Hartstonge K; Mi T; Lin DTS; Huang Q; Brown A; Edwards K; Novakovsky GE; Qi CN; Kobor MS; Zebley CC; Weber EW; Mackall CL; Levings MK
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2219086120. PubMed ID: 36972454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion.
    Gumber D; Wang LD
    EBioMedicine; 2022 Mar; 77():103941. PubMed ID: 35301179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment.
    Martinez M; Moon EK
    Front Immunol; 2019; 10():128. PubMed ID: 30804938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional CAR T cell therapy: An ignition key for systemic immunity in solid tumors.
    Cherkassky L; Hou Z; Amador-Molina A; Adusumilli PS
    Cancer Cell; 2022 Jun; 40(6):569-574. PubMed ID: 35487216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9: A Powerful Strategy to Improve CAR-T Cell Persistence.
    Wei W; Chen ZN; Wang K
    Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro-Transcribed mRNA Chimeric Antigen Receptor T Cell (IVT mRNA CAR T) Therapy in Hematologic and Solid Tumor Management: A Preclinical Update.
    Soundara Rajan T; Gugliandolo A; Bramanti P; Mazzon E
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The persistence and antitumor efficacy of CAR-T cells are modulated by tonic signaling within the CDR.
    Zhou J; Shi F; Luo X; Lei B; Shi Z; Huang C; Zhang Y; Li X; Wang H; Li XY; He X
    Int Immunopharmacol; 2024 Jan; 126():111239. PubMed ID: 37979453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune Cell Hacking: Challenges and Clinical Approaches to Create Smarter Generations of Chimeric Antigen Receptor T Cells.
    Elahi R; Khosh E; Tahmasebi S; Esmaeilzadeh A
    Front Immunol; 2018; 9():1717. PubMed ID: 30108584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of CAR-Mediated Tonic Signaling.
    Calderon H; Mamonkin M; Guedan S
    Methods Mol Biol; 2020; 2086():223-236. PubMed ID: 31707680
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Suematsu M; Yagyu S; Nagao N; Kubota S; Shimizu Y; Tanaka M; Nakazawa Y; Imamura T
    Front Immunol; 2022; 13():770132. PubMed ID: 35154098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies to optimize chimeric antigen receptor T-cell therapy in hematologic malignancies: Chinese experience.
    Sun W; Liang AB; Huang H; Huang XJ
    Haematologica; 2023 Aug; 108(8):2011-2028. PubMed ID: 36794504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replacing CAR-T cell resistance with persistence by changing a single residue.
    Hsieh EM; Scherer LD; Rouce RH
    J Clin Invest; 2020 Jun; 130(6):2806-2808. PubMed ID: 32364534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAR T-Cell Therapy in Hematological Malignancies.
    Haslauer T; Greil R; Zaborsky N; Geisberger R
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of CAR-T cells using lentiviral vectors.
    Poorebrahim M; Quiros-Fernandez I; Fakhr E; Cid-Arregui A
    Methods Cell Biol; 2022; 167():39-69. PubMed ID: 35152998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T-cell exhaustion in CAR-T-cell therapy and strategies to overcome it.
    Yin X; He L; Guo Z
    Immunology; 2023 Aug; 169(4):400-411. PubMed ID: 36942414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antigen loss following CAR-T cell therapy: Mechanisms, implications, and potential solutions.
    Mishra A; Maiti R; Mohan P; Gupta P
    Eur J Haematol; 2024 Feb; 112(2):211-222. PubMed ID: 37705357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.