These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35606847)

  • 1. Press water from the mechanical drying of Douglas-fir wood chips has multiple beneficial effects on lignocellulolytic fungi.
    Reppke MJ; Gerstner R; Windeisen-Holzhauser E; Richter K; Benz JP
    Fungal Biol Biotechnol; 2022 May; 9(1):10. PubMed ID: 35606847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production.
    Li C; Lin F; Li Y; Wei W; Wang H; Qin L; Zhou Z; Li B; Wu F; Chen Z
    Microb Cell Fact; 2016 Sep; 15(1):151. PubMed ID: 27585813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass.
    Meng QS; Liu CG; Zhao XQ; Bai FW
    J Biotechnol; 2018 Nov; 285():56-63. PubMed ID: 30194052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced cellulase production from Trichoderma reesei Rut-C30 by engineering with an artificial zinc finger protein library.
    Zhang F; Bai F; Zhao X
    Biotechnol J; 2016 Oct; 11(10):1282-1290. PubMed ID: 27578229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of Zn
    Li N; Li J; Chen Y; Shen Y; Wei D; Wang W
    Biotechnol Biofuels Bioprod; 2023 Apr; 16(1):73. PubMed ID: 37118821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational engineering of the
    Fonseca LM; Parreiras LS; Murakami MT
    Biotechnol Biofuels; 2020; 13():93. PubMed ID: 32461765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mn
    Chen Y; Shen Y; Wang W; Wei D
    Biotechnol Biofuels; 2018; 11():54. PubMed ID: 29507606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced cellulase production in Trichoderma reesei RUT C30 via constitution of minimal transcriptional activators.
    Zhang J; Zhang G; Wang W; Wang W; Wei D
    Microb Cell Fact; 2018 May; 17(1):75. PubMed ID: 29773074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of enhanced transcriptional activators for improving cellulase production in
    Zhang J; Wu C; Wang W; Wang W; Wei D
    Bioresour Bioprocess; 2018; 5(1):40. PubMed ID: 32288986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30.
    Limón MC; Pakula T; Saloheimo M; Penttilä M
    Microb Cell Fact; 2011 May; 10():40. PubMed ID: 21609467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse.
    Marx IJ; van Wyk N; Smit S; Jacobson D; Viljoen-Bloom M; Volschenk H
    Biotechnol Biofuels; 2013 Nov; 6(1):172. PubMed ID: 24286470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient evaluation of cellulose digestibility by Trichoderma reesei Rut-C30 cultures in online monitored shake flasks.
    Antonov E; Wirth S; Gerlach T; Schlembach I; Rosenbaum MA; Regestein L; Büchs J
    Microb Cell Fact; 2016 Sep; 15(1):164. PubMed ID: 27686382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous enhancement of the beta-exo synergism and exo-exo synergism in Trichoderma reesei cellulase to increase the cellulose degrading capability.
    Fang H; Zhao R; Li C; Zhao C
    Microb Cell Fact; 2019 Jan; 18(1):9. PubMed ID: 30657063
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Chen Y; Wu C; Shen Y; Ma Y; Wei D; Wang W
    Biotechnol Biofuels; 2019; 12():36. PubMed ID: 30820246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expeditious quantification of lignocellulolytic enzymes from indigenous wood rot and litter degrading fungi from tropical dry evergreen forests of Tamil Nadu.
    Sudarson J; Ramalingam S; Kishorekumar P; Venkatesan K
    Biotechnol Res Int; 2014; 2014():127848. PubMed ID: 24719770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global Reprogramming of Gene Transcription in
    Zhang F; Li JX; Champreda V; Liu CG; Bai FW; Zhao XQ
    Front Bioeng Biotechnol; 2020; 8():649. PubMed ID: 32719779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulase hyper-production by
    Li C; Lin F; Zhou L; Qin L; Li B; Zhou Z; Jin M; Chen Z
    Biotechnol Biofuels; 2017; 10():228. PubMed ID: 29034003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Secretomics Analysis Reveals the Major Components of
    Wang K; Zhang N; Pearce R; Yi S; Zhao X
    Microorganisms; 2021 Sep; 9(10):. PubMed ID: 34683363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Artificial zinc finger protein mediated cellulase production in Trichoderma reesei Rut-C30].
    Meng Q; Li J; Zhang F; Zhao X; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2019 Jan; 35(1):81-90. PubMed ID: 30756537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative proteomic analysis of secretome of microbial consortium during saw dust utilization.
    Adav SS; Ravindran A; Cheow ES; Sze SK
    J Proteomics; 2012 Oct; 75(18):5590-603. PubMed ID: 22992538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.