BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35607083)

  • 1. Influence of the Acceptor Composition on Physical Properties and Solar Cell Performance in Semi-Random Two-Acceptor Copolymers.
    Burkhart B; Khlyabich PP; Thompson BC
    ACS Macro Lett; 2012 Jun; 1(6):660-666. PubMed ID: 35607083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrasting performance of donor-acceptor copolymer pairs in ternary blend solar cells and two-acceptor copolymers in binary blend solar cells.
    Khlyabich PP; Rudenko AE; Burkhart B; Thompson BC
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2322-30. PubMed ID: 25590225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of polymer compatibility on the open-circuit voltage in ternary blend bulk heterojunction solar cells.
    Khlyabich PP; Rudenko AE; Street RA; Thompson BC
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):9913-9. PubMed ID: 24955941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers.
    Khlyabich PP; Burkhart B; Thompson BC
    J Am Chem Soc; 2012 Jun; 134(22):9074-7. PubMed ID: 22587584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Surface Energy on Organic Alloy Formation in Ternary Blend Solar Cells Based on Two Donor Polymers.
    Gobalasingham NS; Noh S; Howard JB; Thompson BC
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27931-27941. PubMed ID: 27660888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Energy Modification of Semi-Random P3HTT-DPP.
    Howard JB; Ekiz S; Noh S; Thompson BC
    ACS Macro Lett; 2016 Aug; 5(8):977-981. PubMed ID: 35607215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random Poly(3-hexylthiophene-
    Rudenko AE; Khlyabich PP; Thompson BC
    ACS Macro Lett; 2014 Apr; 3(4):387-392. PubMed ID: 35590751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diketopyrrolopyrrole Polymers for Organic Solar Cells.
    Li W; Hendriks KH; Wienk MM; Janssen RA
    Acc Chem Res; 2016 Jan; 49(1):78-85. PubMed ID: 26693798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Polymer Solar Cells with High Open-Circuit Voltage Containing Diketopyrrolopyrrole-Based Non-Fullerene Acceptor Core End-Capped with Rhodanine Units.
    Privado M; Cuesta V; de la Cruz P; Keshtov ML; Singhal R; Sharmad GD; Langa F
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11739-11748. PubMed ID: 28287699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced charge transfer in donor-acceptor (DA) copolymer: fullerene bis-adduct polymer solar cells.
    Kang TE; Cho HH; Cho CH; Kim KH; Kang H; Lee M; Lee S; Kim B; Im C; Kim BJ
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):861-8. PubMed ID: 23289501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the photocurrent in diketopyrrolopyrrole-based polymer solar cells via energy level control.
    Li W; Roelofs WS; Wienk MM; Janssen RA
    J Am Chem Soc; 2012 Aug; 134(33):13787-95. PubMed ID: 22812425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.
    Li Y
    Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-fullerene organic solar cells based on diketopyrrolopyrrole polymers as electron donors and ITIC as an electron acceptor.
    Jiang X; Xu Y; Wang X; Wu Y; Feng G; Li C; Ma W; Li W
    Phys Chem Chem Phys; 2017 Mar; 19(11):8069-8075. PubMed ID: 28265617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diketopyrrolopyrrole-based π-bridged donor-acceptor polymer for photovoltaic applications.
    Li W; Lee T; Oh SJ; Kagan CR
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3874-83. PubMed ID: 21888419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal correlation between fibril width and quantum efficiency in diketopyrrolopyrrole-based polymer solar cells.
    Li W; Hendriks KH; Furlan A; Roelofs WS; Wienk MM; Janssen RA
    J Am Chem Soc; 2013 Dec; 135(50):18942-8. PubMed ID: 24279503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and Characterization of Two-Dimensional Conjugated Polymers Incorporating Electron-Deficient Moieties for Application in Organic Photovoltaics.
    Hsiow CY; Wang HY; Lin YH; Raja R; Rwei SP; Chiu WY; Dai CA; Wang L
    Polymers (Basel); 2016 Oct; 8(11):. PubMed ID: 30974658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells.
    Chen CP; Chan SH; Chao TC; Ting C; Ko BT
    J Am Chem Soc; 2008 Sep; 130(38):12828-33. PubMed ID: 18759400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternating polyfluorenes collect solar light in polymer photovoltaics.
    Inganäs O; Zhang F; Andersson MR
    Acc Chem Res; 2009 Nov; 42(11):1731-9. PubMed ID: 19835413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-random vs Well-Defined Alternating Donor-Acceptor Copolymers.
    Braunecker WA; Oosterhout SD; Owczarczyk ZR; Kopidakis N; Ratcliff EL; Ginley DS; Olson DC
    ACS Macro Lett; 2014 Jul; 3(7):622-627. PubMed ID: 35590757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.