BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 35607139)

  • 1. Synthesis of Degradable Organic Nanotubes by Bottlebrush Molecular Templating.
    Huang K; Johnson M; Rzayev J
    ACS Macro Lett; 2012 Jul; 1(7):892-895. PubMed ID: 35607139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo synthesis and cellular uptake of organic nanocapsules with tunable surface chemistry.
    Huang K; Jacobs A; Rzayev J
    Biomacromolecules; 2011 Jun; 12(6):2327-34. PubMed ID: 21563757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Well-defined organic nanotubes from multicomponent bottlebrush copolymers.
    Huang K; Rzayev J
    J Am Chem Soc; 2009 May; 131(19):6880-5. PubMed ID: 19397329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organosoluble polypyrrole nanotubes from core-shell bottlebrush copolymers.
    Huang K; Canterbury DP; Rzayev J
    Chem Commun (Camb); 2010 Sep; 46(34):6326-8. PubMed ID: 20683520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Arm Branched Microporous Organic Nanotube Networks.
    He Z; Zhong A; Zhang H; Xiong L; Xu Y; Wang T; Zhou M; Huang K
    Macromol Rapid Commun; 2016 Oct; 37(19):1566-1572. PubMed ID: 27493017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soluble organic nanotubes for catalytic systems.
    Xiong L; Yang K; Zhang H; Liao X; Huang K
    Nanotechnology; 2016 Mar; 27(11):115603. PubMed ID: 27308672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoporous Polymer Frameworks from End-Reactive Bottlebrush Copolymers.
    Altay E; Nykypanchuk D; Rzayev J
    ACS Nano; 2017 Aug; 11(8):8207-8214. PubMed ID: 28782926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyper-Cross-Linking Mediated Self-Assembly Strategy To Synthesize Hollow Microporous Organic Nanospheres.
    He Z; Zhou M; Wang T; Xu Y; Yu W; Shi B; Huang K
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35209-35217. PubMed ID: 28926693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Redox-Responsive Degradable Capsule Particles by a Shell-Selective Photoinduced Cross-Linking Approach from Spherical Polymer Particles.
    Kitayama Y; Takeuchi T
    Chemistry; 2017 Sep; 23(52):12870-12875. PubMed ID: 28656621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold.
    Ahn SK; Carrillo JY; Keum JK; Chen J; Uhrig D; Lokitz BS; Sumpter BG; Michael Kilbey S
    Nanoscale; 2017 Jun; 9(21):7071-7080. PubMed ID: 28422265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and Self-Assembly of Block Copolymers Containing Temperature Sensitive and Degradable Chain Segments.
    Gong HL; Lei L; Shi SX; Xia YZ; Chen XN
    J Nanosci Nanotechnol; 2018 May; 18(5):3266-3273. PubMed ID: 29442827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The immobilization of enzymes and cells of Bacillus stearothermophilus onto poly(maleic anhydride/styrene)-Co-polyethylene and poly(maleic anhydride/vinyl acetate)-Co-polyethylene.
    Beddows CG; Gil HG; Guthrie JT
    Biotechnol Bioeng; 1985 May; 27(5):579-84. PubMed ID: 18553712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer-by-layer assembly of imogolite nanotubes and polyelectrolytes into core-shell particles and their conversion to hierarchically porous spheres.
    Kuroda Y; Kuroda K
    Sci Technol Adv Mater; 2008 Apr; 9(2):025018. PubMed ID: 27877993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of polyethyleneimine and poly(styrene-alt-maleic anhydride) nanotubes through covalent bond.
    Tian Y; He Q; Tao C; Cui Y; Ai S; Li J
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2072-6. PubMed ID: 17025127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ABC triblock terpolymer self-assembled core-shell-corona nanotubes with high aspect ratios.
    Wang L; Huang H; He T
    Macromol Rapid Commun; 2014 Aug; 35(16):1387-96. PubMed ID: 24789700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Influence of Polymer Composition on the Hydrolytic and Enzymatic Degradation of Polyesters and Their Block Copolymers with PDMAEMA.
    Kupczak M; MielaƄczyk A; Neugebauer D
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of enzyme-responsive theranostic amphiphilic conjugated bottlebrush copolymers for enhanced anticancer drug delivery.
    Liu F; Wang D; Zhang M; Ma L; Yu CY; Wei H
    Acta Biomater; 2022 May; 144():15-31. PubMed ID: 35306183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione-triggered disassembly of dual disulfide located degradable nanocarriers of polylactide-based block copolymers for rapid drug release.
    Ko NR; Oh JK
    Biomacromolecules; 2014 Aug; 15(8):3180-9. PubMed ID: 25026022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, function, self-assembly, and applications of bottlebrush copolymers.
    Verduzco R; Li X; Pesek SL; Stein GE
    Chem Soc Rev; 2015 Apr; 44(8):2405-20. PubMed ID: 25688538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Synthesis and Self-Assembly of Bottlebrush Block Copolymers at Room Temperature via Photoinitiated RAFT Dispersion Polymerization.
    Liu D; Yang S; Peng S; Chen Y; Zhang L; Tan J
    Macromol Rapid Commun; 2022 Apr; 43(8):e2100921. PubMed ID: 35212438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.