BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35607167)

  • 1. Temperature-Controlled, Reversible, Nanofiber Assembly from an Amphiphilic Macrocycle.
    Li L; Che Y; Gross DE; Huang H; Moore JS; Zang L
    ACS Macro Lett; 2012 Nov; 1(11):1335-1338. PubMed ID: 35607167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanofibril self-assembly of an arylene ethynylene macrocycle.
    Balakrishnan K; Datar A; Zhang W; Yang X; Naddo T; Huang J; Zuo J; Yen M; Moore JS; Zang L
    J Am Chem Soc; 2006 May; 128(20):6576-7. PubMed ID: 16704255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of bulky substituents on the self-assembly and mixing behavior of arylene ethynylene macrocycles at the solid/liquid interface.
    Xu L; Yang L; Cao L; Li T; Chen S; Zhao D; Lei S; Ma J
    Phys Chem Chem Phys; 2013 Jul; 15(28):11748-57. PubMed ID: 23756563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafine nanofibers fabricated from an arylene-ethynylene macrocyclic molecule using surface assisted self-assembly.
    Datar A; Gross DE; Balakrishnan K; Yang X; Moore JS; Zang L
    Chem Commun (Camb); 2012 Sep; 48(71):8904-6. PubMed ID: 22842343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A shape-persistent arylene ethynylene macrocycle with a multiple acetamide modified cavity: synthesis and gelation.
    Ruan Y; Li QH; Shu L; Wan JH
    Soft Matter; 2021 Mar; 17(11):3242-3249. PubMed ID: 33625436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Self-Assembly of Amphiphilic Random Copolymers into Folded Micelles and Nanostructure Materials.
    Terashima T
    J Oleo Sci; 2020 Jun; 69(6):529-538. PubMed ID: 32404554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular self-assembly into one-dimensional nanostructures.
    Palmer LC; Stupp SI
    Acc Chem Res; 2008 Dec; 41(12):1674-84. PubMed ID: 18754628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-dimensional self-assembly of planar pi-conjugated molecules: adaptable building blocks for organic nanodevices.
    Zang L; Che Y; Moore JS
    Acc Chem Res; 2008 Dec; 41(12):1596-608. PubMed ID: 18616298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled arrays of self-assembled peptide nanostructures in solution and at interface.
    Wang JX; Lei Q; Luo GF; Cai TT; Li JL; Cheng SX; Zhuo RX; Zhang XZ
    Langmuir; 2013 Jun; 29(23):6996-7004. PubMed ID: 23663135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding.
    Han S; Cao S; Wang Y; Wang J; Xia D; Xu H; Zhao X; Lu JR
    Chemistry; 2011 Nov; 17(46):13095-102. PubMed ID: 21956759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and Self-Assembly of Cyclic 2,7-Anthrylene Ethynylene 1,3-Phenylene Ethynylene Trimer with a Planar Conformation.
    Takaki Y; Ozawa R; Kajitani T; Fukushima T; Mitsui M; Kobayashi K
    Chemistry; 2016 Nov; 22(47):16760-16764. PubMed ID: 27734532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable and Reversible Assembly of Nanofiber from Natural Macromolecules via Protonation and Deprotonation.
    Zheng H; Tong X; Zhang Y; Yin P; Yi J; Chen Z; Lai H; Zhou W; Zhong L; Zhuo H; Peng X
    Small; 2024 Jan; 20(1):e2304196. PubMed ID: 37665232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-π Amphiphiles: A Unique Building Block for the Crafting of DNA-Decorated Unilamellar Nanostructures.
    Albert SK; Golla M; Krishnan N; Perumal D; Varghese R
    Acc Chem Res; 2020 Nov; 53(11):2668-2679. PubMed ID: 33052654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering the evolution of supramolecular nanofibers in solution and solid-state: a combined microscopic and spectroscopic approach.
    Kundu S; Chowdhury A; Nandi S; Bhattacharyya K; Patra A
    Chem Sci; 2021 Mar; 12(16):5874-5882. PubMed ID: 34168812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Induced nanofiber growth by self-assembly of a silk-elastin-like protein polymer.
    Hwang W; Kim BH; Dandu R; Cappello J; Ghandehari H; Seog J
    Langmuir; 2009 Nov; 25(21):12682-6. PubMed ID: 19803470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable Self-Assembly of Amphiphilic Zwitterionic PBI Towards Tunable Surface Wettability of the Nanostructures.
    Ye Y; Lü B; Cheng W; Wu Z; Wei J; Yin M
    Chem Asian J; 2017 May; 12(9):1020-1024. PubMed ID: 28322511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible hydrogel-solution system of silk with high beta-sheet content.
    Bai S; Zhang X; Lu Q; Sheng W; Liu L; Dong B; Kaplan DL; Zhu H
    Biomacromolecules; 2014 Aug; 15(8):3044-51. PubMed ID: 25056606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of photochromic diarylethenes with amphiphilic side chains: reversible thermal and photochemical control.
    Hirose T; Matsuda K; Irie M
    J Org Chem; 2006 Sep; 71(20):7499-508. PubMed ID: 16995652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering aqueous fiber assembly into silk-elastin-like protein polymers.
    Zeng L; Jiang L; Teng W; Cappello J; Zohar Y; Wu X
    Macromol Rapid Commun; 2014 Jul; 35(14):1273-9. PubMed ID: 24798978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hofmeister Effects on Peptide Amphiphile Nanofiber Self-Assembly.
    Iscen A; Schatz GC
    J Phys Chem B; 2019 Aug; 123(32):7006-7013. PubMed ID: 31337221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.