BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35607950)

  • 1. Spontaneous, co-translational peptide macrocyclization using
    Franco HEO; Chaloux BT; Hartman MCT
    Chem Commun (Camb); 2022 Jun; 58(47):6737-6740. PubMed ID: 35607950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p-Chloropropynyl Phenylalanine, a Versatile Non-Canonical Amino Acid for Co-Translational Peptide Macrocyclization and Side Chain Diversification.
    Osorio Franco HE; Le AV; Chang NY; Hartman MCT
    Chembiochem; 2023 Jun; 24(11):e202300020. PubMed ID: 37156744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthetic Strategies for Macrocyclic Peptides.
    Wang W; Khojasteh SC; Su D
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34206124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Binding Affinity of in-Vitro-Evolved Cyclic Peptides by Inserting Atoms into the Macrocycle Backbone.
    Wilbs J; Middendorp SJ; Heinis C
    Chembiochem; 2016 Dec; 17(24):2299-2303. PubMed ID: 27862752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Genetically Encoded, Phage-Displayed Cyclic-Peptide Library.
    Wang XS; Chen PC; Hampton JT; Tharp JM; Reed CA; Das SK; Wang DS; Hayatshahi HS; Shen Y; Liu J; Liu WR
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15904-15909. PubMed ID: 31398275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of Peptide-Bismuth Bicycles Using Phage Display.
    He RN; Zhang MJ; Dai B; Kong XD
    ACS Chem Biol; 2024 May; 19(5):1040-1044. PubMed ID: 38620022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct, Competitive Comparison of Linear, Monocyclic, and Bicyclic Libraries Using mRNA Display.
    Hacker DE; Abrigo NA; Hoinka J; Richardson SL; Przytycka TM; Hartman MCT
    ACS Comb Sci; 2020 Jun; 22(6):306-310. PubMed ID: 32418423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic Macrocyclization of 1,2,3-Triazole Peptide Mimetics.
    Oueis E; Jaspars M; Westwood NJ; Naismith JH
    Angew Chem Int Ed Engl; 2016 May; 55(19):5842-5. PubMed ID: 27059105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatible and Rapid Cyclization of Peptides with 2,4-Difluoro-6-hydroxy-1,3,5-benzenetricarbonitrile for the Development of Cyclic Peptide Libraries.
    Zheng X; Liu W; Liu Z; Zhao Y; Wu C
    Bioconjug Chem; 2020 Sep; 31(9):2085-2091. PubMed ID: 32794769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Arene Triazene Chemistry for Macrocyclization.
    Nwajiobi O; Verma AK; Raj M
    J Am Chem Soc; 2022 Mar; 144(10):4633-4641. PubMed ID: 35232021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asparaginyl Endopeptidase-Mediated Peptide Cyclization for Phage Display.
    Wan XC; Zhang YN; Zhang H; Chen Y; Cui ZH; Zhu WJ; Fang GM
    Org Lett; 2024 Apr; 26(13):2601-2605. PubMed ID: 38529932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structurally diverse cyclisation linkers impose different backbone conformations in bicyclic peptides.
    Chen S; Morales-Sanfrutos J; Angelini A; Cutting B; Heinis C
    Chembiochem; 2012 May; 13(7):1032-8. PubMed ID: 22492661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global analysis of peptide cyclization efficiency.
    Thakkar A; Trinh TB; Pei D
    ACS Comb Sci; 2013 Feb; 15(2):120-9. PubMed ID: 23265659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of Functional Macrocyclic Peptides by Means of the RaPID System.
    Tsiamantas C; Otero-Ramirez ME; Suga H
    Methods Mol Biol; 2019; 2001():299-315. PubMed ID: 31134577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Attractive Non-Covalent Interactions in Peptide Macrocyclization.
    Diaz DB; Rowshanpour R; Saunders GJ; Dudding T; Yudin AK
    J Org Chem; 2024 Feb; 89(3):1483-1491. PubMed ID: 38217516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Condensation of 2-((Alkylthio)(aryl)methylene)malononitrile with 1,2-Aminothiol as a Novel Bioorthogonal Reaction for Site-Specific Protein Modification and Peptide Cyclization.
    Zheng X; Li Z; Gao W; Meng X; Li X; Luk LYP; Zhao Y; Tsai YH; Wu C
    J Am Chem Soc; 2020 Mar; 142(11):5097-5103. PubMed ID: 32108479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Construction of a Genetically Encoded, Phage-Displayed Cyclic-Peptide Library.
    Chen PC; Liu WR
    Methods Mol Biol; 2021; 2355():219-230. PubMed ID: 34386961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bicyclic Peptides as Next-Generation Therapeutics.
    Rhodes CA; Pei D
    Chemistry; 2017 Sep; 23(52):12690-12703. PubMed ID: 28590540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for the Construction of Multicyclic Phage Display Libraries.
    Chen FJ; Pinnette N; Gao J
    Chembiochem; 2024 May; 25(9):e202400072. PubMed ID: 38466139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-Selective Peptide Macrocyclization.
    Wills R; Adebomi V; Raj M
    Chembiochem; 2021 Jan; 22(1):52-62. PubMed ID: 32794268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.