These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35608031)

  • 1. Domain- and task-analytic workload (DTAW) method: a methodology for predicting mental workload during severe accidents in nuclear power plants.
    Liu Y; Gao Q; Wu M
    Ergonomics; 2023 Feb; 66(2):261-290. PubMed ID: 35608031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and evaluation of a monitoring-aid system for a nuclear power plant in control room system manipulation.
    Lin JT; Chen YC; Wu SC; Hwang SL
    Work; 2017; 57(4):611-625. PubMed ID: 28826200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinctive physical insights driven from machine learning modelling of nuclear power plant severe accident scenario propagation.
    Hossny K; Villanueva W; Wang HD
    Sci Rep; 2023 Jan; 13(1):930. PubMed ID: 36650268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Automation for Emergency Operating Procedures on Human Performance in a Nuclear Power Plant.
    Qing T; Liu Z; Tang Y; Hu H; Zhang L; Chen S
    Health Phys; 2021 Sep; 121(3):261-270. PubMed ID: 34261893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding individualistic response patterns when assessing expert operators on nuclear power plant control tasks.
    Reinerman L; Mercado J; Szalma JL; Hancock PA
    Ergonomics; 2020 Apr; 63(4):440-460. PubMed ID: 31623536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the impact of main control room digitalization on operators cognitive reliability in nuclear power plants.
    Zhou Y; Mu H; Jiang J; Zhang L
    Work; 2012; 41 Suppl 1():714-21. PubMed ID: 22316806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mental workload measurement for emergency operating procedures in digital nuclear power plants.
    Gao Q; Wang Y; Song F; Li Z; Dong X
    Ergonomics; 2013; 56(7):1070-85. PubMed ID: 23654299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Context-Dependent Cognitive Workload Monitoring using Pupillometry for Control Room Operators to Prevent Overload.
    Bhavsar P
    IISE Trans Occup Ergon Hum Factors; 2022; 10(2):91-103. PubMed ID: 35575073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automations influence on nuclear power plants: a look at three accidents and how automation played a role.
    Schmitt K
    Work; 2012; 41 Suppl 1():4545-51. PubMed ID: 22317420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination breakdowns in nuclear power plant control rooms: cause identification and behaviour-sequence analysis.
    Wang D; Gao Q; Tan H; Liu Z; Zhou L; Jia L; Li Z
    Ergonomics; 2020 Jun; 63(6):660-681. PubMed ID: 32281476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of environmental public exposure from a hypothetical nuclear accident for Unit-1 Bushehr nuclear power plant.
    Sohrabi M; Ghasemi M; Amrollahi R; Khamooshi C; Parsouzi Z
    Radiat Environ Biophys; 2013 May; 52(2):235-44. PubMed ID: 23358597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Peak-End Effects in Air Traffic Controllers' Mental Workload Ratings.
    Qiao H; Zhang J; Zhang L; Li Y; Loft S
    Hum Factors; 2022 Dec; 64(8):1292-1305. PubMed ID: 33657905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining Cognitive Workload Using Physiological Measurements: Pupillometry and Heart-Rate Variability.
    Ma X; Monfared R; Grant R; Goh YM
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac measures of nuclear power plant operator stress during simulated incident and accident scenarios.
    Pakarinen S; Korpela J; Torniainen J; Laarni J; Karvonen H
    Psychophysiology; 2018 Jul; 55(7):e13071. PubMed ID: 29498055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of operators' mental workload using physiological and subjective measures in cement, city traffic and power plant control centers.
    Fallahi M; Motamedzade M; Heidarimoghadam R; Soltanian AR; Miyake S
    Health Promot Perspect; 2016; 6(2):96-103. PubMed ID: 27386425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring cognitive workload in the nuclear control room: a review.
    Braarud PØ
    Ergonomics; 2024 Jun; 67(6):849-865. PubMed ID: 38279638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of integrated designs of alarm and process information on diagnosis performance in digital nuclear power plants.
    Wu X; She M; Li Z; Song F; Sang W
    Ergonomics; 2017 Dec; 60(12):1653-1666. PubMed ID: 28599609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of team workload on team performance in the light of task complexity: a study of nuclear fire brigades.
    Takacs VK; Juhasz M
    Int J Occup Saf Ergon; 2023 Sep; 29(3):1231-1240. PubMed ID: 36017962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transitions Between Low and High Levels of Mental Workload can Improve Multitasking Performance.
    Devlin SP; Moacdieh NM; Wickens CD; Riggs SL
    IISE Trans Occup Ergon Hum Factors; 2020; 8(2):72-87. PubMed ID: 32673167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the Physiological Correlates of Mental Workload Variations in Tracking and Collision Prediction Tasks.
    John AR; Singh AK; Do TN; Eidels A; Nalivaiko E; Gavgani AM; Brown S; Bennett M; Lal S; Simpson AM; Gustin SM; Double K; Walker FR; Kleitman S; Morley J; Lin CT
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():770-781. PubMed ID: 35259108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.