These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
673 related articles for article (PubMed ID: 35608136)
1. Facilitating clinical research through automation: Combining optical character recognition with natural language processing. Hom J; Nikowitz J; Ottesen R; Niland JC Clin Trials; 2022 Oct; 19(5):504-511. PubMed ID: 35608136 [TBL] [Abstract][Full Text] [Related]
2. Validation of a Zero-shot Learning Natural Language Processing Tool to Facilitate Data Abstraction for Urologic Research. Kaufmann B; Busby D; Das CK; Tillu N; Menon M; Tewari AK; Gorin MA Eur Urol Focus; 2024 Mar; 10(2):279-287. PubMed ID: 38278710 [TBL] [Abstract][Full Text] [Related]
3. Automated medical chart review for breast cancer outcomes research: a novel natural language processing extraction system. Chen Y; Hao L; Zou VZ; Hollander Z; Ng RT; Isaac KV BMC Med Res Methodol; 2022 May; 22(1):136. PubMed ID: 35549854 [TBL] [Abstract][Full Text] [Related]
5. Extracting laboratory test information from paper-based reports. Ma MW; Gao XS; Zhang ZY; Shang SY; Jin L; Liu PL; Lv F; Ni W; Han YC; Zong H BMC Med Inform Decis Mak; 2023 Nov; 23(1):251. PubMed ID: 37932733 [TBL] [Abstract][Full Text] [Related]
6. Programming techniques for improving rule readability for rule-based information extraction natural language processing pipelines of unstructured and semi-structured medical texts. Ladas N; Borchert F; Franz S; Rehberg A; Strauch N; Sommer KK; Marschollek M; Gietzelt M Health Informatics J; 2023; 29(2):14604582231164696. PubMed ID: 37068028 [TBL] [Abstract][Full Text] [Related]
7. Automatic classification of scanned electronic health record documents. Goodrum H; Roberts K; Bernstam EV Int J Med Inform; 2020 Dec; 144():104302. PubMed ID: 33091829 [TBL] [Abstract][Full Text] [Related]
8. Identification of Preanesthetic History Elements by a Natural Language Processing Engine. Suh HS; Tully JL; Meineke MN; Waterman RS; Gabriel RA Anesth Analg; 2022 Dec; 135(6):1162-1171. PubMed ID: 35841317 [TBL] [Abstract][Full Text] [Related]
9. Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing. Wulff A; Mast M; Hassler M; Montag S; Marschollek M; Jack T Methods Inf Med; 2020 Dec; 59(S 02):e64-e78. PubMed ID: 33058101 [TBL] [Abstract][Full Text] [Related]
10. An automated data verification approach for improving data quality in a clinical registry. Tian Q; Liu M; Min L; An J; Lu X; Duan H Comput Methods Programs Biomed; 2019 Nov; 181():104840. PubMed ID: 30777618 [TBL] [Abstract][Full Text] [Related]
11. Detecting the presence of an indwelling urinary catheter and urinary symptoms in hospitalized patients using natural language processing. Gundlapalli AV; Divita G; Redd A; Carter ME; Ko D; Rubin M; Samore M; Strymish J; Krein S; Gupta K; Sales A; Trautner BW J Biomed Inform; 2017 Jul; 71S():S39-S45. PubMed ID: 27404849 [TBL] [Abstract][Full Text] [Related]
12. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records. Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698 [TBL] [Abstract][Full Text] [Related]
13. Using natural language processing to extract structured epilepsy data from unstructured clinic letters: development and validation of the ExECT (extraction of epilepsy clinical text) system. Fonferko-Shadrach B; Lacey AS; Roberts A; Akbari A; Thompson S; Ford DV; Lyons RA; Rees MI; Pickrell WO BMJ Open; 2019 Apr; 9(4):e023232. PubMed ID: 30940752 [TBL] [Abstract][Full Text] [Related]
15. Natural Language Processing to Identify Advance Care Planning Documentation in a Multisite Pragmatic Clinical Trial. Lindvall C; Deng CY; Moseley E; Agaronnik N; El-Jawahri A; Paasche-Orlow MK; Lakin JR; Volandes A; Tulsky TAIJA J Pain Symptom Manage; 2022 Jan; 63(1):e29-e36. PubMed ID: 34271146 [TBL] [Abstract][Full Text] [Related]
16. Task definition, annotated dataset, and supervised natural language processing models for symptom extraction from unstructured clinical notes. Steinkamp JM; Bala W; Sharma A; Kantrowitz JJ J Biomed Inform; 2020 Feb; 102():103354. PubMed ID: 31838210 [TBL] [Abstract][Full Text] [Related]
17. Importance of multi-modal approaches to effectively identify cataract cases from electronic health records. Peissig PL; Rasmussen LV; Berg RL; Linneman JG; McCarty CA; Waudby C; Chen L; Denny JC; Wilke RA; Pathak J; Carrell D; Kho AN; Starren JB J Am Med Inform Assoc; 2012; 19(2):225-34. PubMed ID: 22319176 [TBL] [Abstract][Full Text] [Related]
18. Automated System to Capture Patient Symptoms From Multitype Japanese Clinical Texts: Retrospective Study. Nishiyama T; Yamaguchi A; Han P; Pereira LWK; Otsuki Y; Andrade GHB; Kudo N; Yada S; Wakamiya S; Aramaki E; Takada M; Toi M JMIR Med Inform; 2024 Sep; 12():e58977. PubMed ID: 39316418 [TBL] [Abstract][Full Text] [Related]
19. [A customized method for information extraction from unstructured text data in the electronic medical records]. Bao XY; Huang WJ; Zhang K; Jin M; Li Y; Niu CZ Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):256-263. PubMed ID: 29643524 [TBL] [Abstract][Full Text] [Related]
20. Obtaining Knowledge in Pathology Reports Through a Natural Language Processing Approach With Classification, Named-Entity Recognition, and Relation-Extraction Heuristics. Oliwa T; Maron SB; Chase LM; Lomnicki S; Catenacci DVT; Furner B; Volchenboum SL JCO Clin Cancer Inform; 2019 Aug; 3():1-8. PubMed ID: 31365274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]