BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 35608242)

  • 1. Magnetic stimulation allows focal activation of the mouse cochlea.
    Lee JI; Seist R; McInturff S; Lee DJ; Brown MC; Stankovic KM; Fried S
    Elife; 2022 May; 11():. PubMed ID: 35608242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spread of activation and interaction between channels with multi-channel optogenetic stimulation in the mouse cochlea.
    Azees AA; Thompson AC; Thomas R; Zhou J; Ruther P; Wise AK; Ajay EA; Garrett DJ; Quigley A; Fallon JB; Richardson RT
    Hear Res; 2023 Dec; 440():108911. PubMed ID: 37977051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thin-film micro-electrode stimulation of the cochlea in rats exposed to aminoglycoside induced hearing loss.
    Allitt BJ; Harris AR; Morgan SJ; Clark GM; Paolini AG
    Hear Res; 2016 Jan; 331():13-26. PubMed ID: 26471198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Midbrain responses to micro-stimulation of the cochlea using high density thin-film arrays.
    Allitt BJ; Morgan SJ; Bell S; Nayagam DA; Arhatari B; Clark GM; Paolini AG
    Hear Res; 2012 May; 287(1-2):30-42. PubMed ID: 22531007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory prosthesis with a penetrating nerve array.
    Middlebrooks JC; Snyder RL
    J Assoc Res Otolaryngol; 2007 Jun; 8(2):258-79. PubMed ID: 17265124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cochlear Implant Stimulation of a Hearing Ear Generates Separate Electrophonic and Electroneural Responses.
    Sato M; Baumhoff P; Kral A
    J Neurosci; 2016 Jan; 36(1):54-64. PubMed ID: 26740649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Psychoacoustic and electrophysiological electric-acoustic interaction effects in cochlear implant users with ipsilateral residual hearing.
    Imsiecke M; Büchner A; Lenarz T; Nogueira W
    Hear Res; 2020 Feb; 386():107873. PubMed ID: 31884220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near physiological spectral selectivity of cochlear optogenetics.
    Dieter A; Duque-Afonso CJ; Rankovic V; Jeschke M; Moser T
    Nat Commun; 2019 Apr; 10(1):1962. PubMed ID: 31036812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cochlear implant electrode configuration effects on activation threshold and tonotopic selectivity.
    Snyder RL; Middlebrooks JC; Bonham BH
    Hear Res; 2008 Jan; 235(1-2):23-38. PubMed ID: 18037252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fast, stochastic, and adaptive model of auditory nerve responses to cochlear implant stimulation.
    van Gendt MJ; Briaire JJ; Kalkman RK; Frijns JHM
    Hear Res; 2016 Nov; 341():130-143. PubMed ID: 27594099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the association of electrically-evoked compound action potential thresholds with inner-ear dimensions in pediatric cochlear implantation.
    Söderqvist S; Sivonen V; Lamminmäki S; Ylönen J; Markkola A; Sinkkonen ST
    Int J Pediatr Otorhinolaryngol; 2022 Jul; 158():111160. PubMed ID: 35544967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cochlear implantation in children with anomalous cochleovestibular anatomy.
    Papsin BC
    Laryngoscope; 2005 Jan; 115(1 Pt 2 Suppl 106):1-26. PubMed ID: 15626926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards the optical cochlear implant: optogenetic approaches for hearing restoration.
    Dieter A; Keppeler D; Moser T
    EMBO Mol Med; 2020 Apr; 12(4):e11618. PubMed ID: 32227585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and Miniaturization of Silver-Nanoparticle Microcoil via Aerosol Jet Printing Techniques for Micromagnetic Cochlear Stimulation.
    Sarreal RR; Bhatti P
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indication of direct acoustical cochlea stimulation in comparison to cochlear implants.
    Kludt E; Büchner A; Schwab B; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():185-190. PubMed ID: 26836967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. μLED-based optical cochlear implants for spectrally selective activation of the auditory nerve.
    Dieter A; Klein E; Keppeler D; Jablonski L; Harczos T; Hoch G; Rankovic V; Paul O; Jeschke M; Ruther P; Moser T
    EMBO Mol Med; 2020 Aug; 12(8):e12387. PubMed ID: 32596983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of electrode position on the dynamic range of a human auditory nerve fiber.
    Rattay F; Tanzer T
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35105835
    [No Abstract]   [Full Text] [Related]  

  • 18. Towards optogenetic approaches for hearing restoration.
    Moser T; Dieter A
    Biochem Biophys Res Commun; 2020 Jun; 527(2):337-342. PubMed ID: 32033755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postoperative Electrocochleography from Hybrid Cochlear Implant users: An Alternative Analysis Procedure.
    Kim JS; Tejani VD; Abbas PJ; Brown CJ
    Hear Res; 2018 Dec; 370():304-315. PubMed ID: 30393003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residual hearing conservation and electroacoustic stimulation with the nucleus 24 contour advance cochlear implant.
    Fraysse B; Macías AR; Sterkers O; Burdo S; Ramsden R; Deguine O; Klenzner T; Lenarz T; Rodriguez MM; Von Wallenberg E; James C
    Otol Neurotol; 2006 Aug; 27(5):624-33. PubMed ID: 16868510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.