BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35608326)

  • 1. Sphingolipids are involved in insect egg-induced cell death in Arabidopsis.
    Groux R; Fouillen L; Mongrand S; Reymond P
    Plant Physiol; 2022 Aug; 189(4):2535-2553. PubMed ID: 35608326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sphingolipid-Induced Programmed Cell Death is a Salicylic Acid and EDS1-Dependent Phenotype in Arabidopsis Fatty Acid Hydroxylase (Fah1, Fah2) and Ceramide Synthase (Loh2) Triple Mutants.
    König S; Gömann J; Zienkiewicz A; Zienkiewicz K; Meldau D; Herrfurth C; Feussner I
    Plant Cell Physiol; 2022 Mar; 63(3):317-325. PubMed ID: 34910213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The immune components ENHANCED DISEASE SUSCEPTIBILITY 1 and PHYTOALEXIN DEFICIENT 4 are required for cell death caused by overaccumulation of ceramides in Arabidopsis.
    Zeng HY; Liu Y; Chen DK; Bao HN; Huang LQ; Yin J; Chen YL; Xiao S; Yao N
    Plant J; 2021 Sep; 107(5):1447-1465. PubMed ID: 34180563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oviposition by pierid butterflies triggers defense responses in Arabidopsis.
    Little D; Gouhier-Darimont C; Bruessow F; Reymond P
    Plant Physiol; 2007 Feb; 143(2):784-800. PubMed ID: 17142483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of Arabidopsis Ceramide Synthases Differentially Affects Growth, Sphingolipid Metabolism, Programmed Cell Death, and Mycotoxin Resistance.
    Luttgeharm KD; Chen M; Mehra A; Cahoon RE; Markham JE; Cahoon EB
    Plant Physiol; 2015 Oct; 169(2):1108-17. PubMed ID: 26276842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis natural variation in insect egg-induced cell death reveals a role for LECTIN RECEPTOR KINASE-I.1.
    Groux R; Stahl E; Gouhier-Darimont C; Kerdaffrec E; Jimenez-Sandoval P; Santiago J; Reymond P
    Plant Physiol; 2021 Feb; 185(1):240-255. PubMed ID: 33631806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic analysis reveals three novel QTLs underpinning a butterfly egg-induced hypersensitive response-like cell death in Brassica rapa.
    Bassetti N; Caarls L; Bukovinszkine'Kiss G; El-Soda M; van Veen J; Bouwmeester K; Zwaan BJ; Schranz ME; Bonnema G; Fatouros NE
    BMC Plant Biol; 2022 Mar; 22(1):140. PubMed ID: 35331150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signalling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP-triggered immunity.
    Gouhier-Darimont C; Schmiesing A; Bonnet C; Lassueur S; Reymond P
    J Exp Bot; 2013 Jan; 64(2):665-74. PubMed ID: 23264520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insect eggs suppress plant defence against chewing herbivores.
    Bruessow F; Gouhier-Darimont C; Buchala A; Metraux JP; Reymond P
    Plant J; 2010 Jun; 62(5):876-85. PubMed ID: 20230509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ceramides regulate defense response by binding to RbohD in Arabidopsis.
    Li J; Yin J; Wu JX; Wang LY; Liu Y; Huang LQ; Wang RH; Yao N
    Plant J; 2022 Mar; 109(6):1427-1440. PubMed ID: 34919775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of Arabidopsis neutral ceramidases 1 and 2 results in specific sphingolipid imbalances triggering different phytohormone-dependent plant cell death programmes.
    Zienkiewicz A; Gömann J; König S; Herrfurth C; Liu YT; Meldau D; Feussner I
    New Phytol; 2020 Apr; 226(1):170-188. PubMed ID: 31758808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphatidylcholines from
    Stahl E; Brillatz T; Ferreira Queiroz E; Marcourt L; Schmiesing A; Hilfiker O; Riezman I; Riezman H; Wolfender JL; Reymond P
    Elife; 2020 Sep; 9():. PubMed ID: 32985977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Large Cabbage White butterfly male-derived compounds in elicitation of direct and indirect egg-killing defenses in the black mustard.
    Fatouros NE; Paniagua Voirol LR; Drizou F; Doan QT; Pineda A; Frago E; van Loon JJ
    Front Plant Sci; 2015; 6():794. PubMed ID: 26483811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insect egg deposition renders plant defence against hatching larvae more effective in a salicylic acid-dependent manner.
    Lortzing V; Oberländer J; Lortzing T; Tohge T; Steppuhn A; Kunze R; Hilker M
    Plant Cell Environ; 2019 Mar; 42(3):1019-1032. PubMed ID: 30252928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insect eggs induce a systemic acquired resistance in Arabidopsis.
    Hilfiker O; Groux R; Bruessow F; Kiefer K; Zeier J; Reymond P
    Plant J; 2014 Dec; 80(6):1085-94. PubMed ID: 25329965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Arabidopsis Mitochondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumulation and Signaling.
    Zhang S; Li C; Wang R; Chen Y; Shu S; Huang R; Zhang D; Li J; Xiao S; Yao N; Yang C
    Plant Physiol; 2017 Apr; 173(4):2294-2307. PubMed ID: 28250067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ORM Expression Alters Sphingolipid Homeostasis and Differentially Affects Ceramide Synthase Activity.
    Kimberlin AN; Han G; Luttgeharm KD; Chen M; Cahoon RE; Stone JM; Markham JE; Dunn TM; Cahoon EB
    Plant Physiol; 2016 Oct; 172(2):889-900. PubMed ID: 27506241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract.
    Schmiesing A; Emonet A; Gouhier-Darimont C; Reymond P
    Plant Physiol; 2016 Apr; 170(4):2432-43. PubMed ID: 26884488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphingolipid-induced cell death in Arabidopsis is negatively regulated by the papain-like cysteine protease RD21.
    Ormancey M; Thuleau P; van der Hoorn RAL; Grat S; Testard A; Kamal KY; Boudsocq M; Cotelle V; Mazars C
    Plant Sci; 2019 Mar; 280():12-17. PubMed ID: 30823989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant defensive responses to insect eggs are inducible by general egg-associated elicitors.
    Lortzing V; Valsamakis G; Jantzen F; Hundacker J; Paniagua Voirol LR; Schumacher F; Kleuser B; Hilker M
    Sci Rep; 2024 Jan; 14(1):1076. PubMed ID: 38212511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.