These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35608360)

  • 1. BiFeO
    Zhang Z; Tan B; Ma W; Liu B; Sun M; Cooper JK; Han W
    Mater Horiz; 2022 Jul; 9(7):1999-2006. PubMed ID: 35608360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optoelectrical Regulation of CuBi
    Sun M; Chen W; Jiang X; Liu B; Tan B; Luo L; Xie M; Zhang Z
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43946-43954. PubMed ID: 36112973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gradient Self-Doped CuBi
    Wang F; Septina W; Chemseddine A; Abdi FF; Friedrich D; Bogdanoff P; van de Krol R; Tilley SD; Berglund SP
    J Am Chem Soc; 2017 Oct; 139(42):15094-15103. PubMed ID: 28968492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface Engineering of Colloidal CdSe Quantum Dot Thin Films as Acid-Stable Photocathodes for Solar-Driven Hydrogen Evolution.
    Li H; Wen P; Hoxie A; Dun C; Adhikari S; Li Q; Lu C; Itanze DS; Jiang L; Carroll D; Lachgar A; Qiu Y; Geyer SM
    ACS Appl Mater Interfaces; 2018 May; 10(20):17129-17139. PubMed ID: 29712425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pt Nanoparticle Assisted Homogeneous Surface Engineering of Polymer-Based Bulk-Heterojunction Photocathodes for Efficient Charge Extraction and Catalytic Hydrogen Evolution.
    Wu Y; Liu D; Le J; Zhuang H; Kuang Y
    Small; 2023 Mar; 19(11):e2206763. PubMed ID: 36599667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.
    Wang J; Feng B; Su J; Guo L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasi-hydrophilic black silicon photocathodes with inverted pyramid arrays for enhanced hydrogen generation.
    Zhao S; Yuan G; Wang Q; Liu W; Wang R; Yang S
    Nanoscale; 2020 Jan; 12(1):316-325. PubMed ID: 31825048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A oxygen vacancy-modulated homojunction structural CuBi
    Wei S; Wang C; Long X; Wang T; Wang P; Zhang M; Li S; Ma J; Jin J; Wu L
    Nanoscale; 2020 Jul; 12(28):15193-15200. PubMed ID: 32638787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting.
    Luo J; Steier L; Son MK; Schreier M; Mayer MT; Grätzel M
    Nano Lett; 2016 Mar; 16(3):1848-57. PubMed ID: 26866762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic enhanced Cu
    Cheng X; Gu S; Centeno A; Dawson G
    Sci Rep; 2019 Mar; 9(1):5140. PubMed ID: 30914703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All Solution-Processed, Hybrid Organic-Inorganic Photocathode for Hydrogen Evolution.
    Rojas HC; Bellani S; Sarduy EA; Fumagalli F; Mayer MT; Schreier M; Grätzel M; Di Fonzo F; Antognazza MR
    ACS Omega; 2017 Jul; 2(7):3424-3431. PubMed ID: 31457664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High performance BiFeO
    Das S; Fourmont P; Benetti D; Cloutier SG; Nechache R; Wang ZM; Rosei F
    J Chem Phys; 2020 Aug; 153(8):084705. PubMed ID: 32872869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hole-Storage Enhanced a-Si Photocathodes for Efficient Hydrogen Production.
    Zhang D; Du M; Wang P; Wang H; Shi W; Gao Y; Karuturi S; Catchpole K; Zhang J; Fan F; Shi J; Liu S
    Angew Chem Int Ed Engl; 2021 May; 60(21):11966-11972. PubMed ID: 33590572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Earth-Abundant Tin Sulfide-Based Photocathodes for Solar Hydrogen Production.
    Cheng W; Singh N; Elliott W; Lee J; Rassoolkhani A; Jin X; McFarland EW; Mubeen S
    Adv Sci (Weinh); 2018 Jan; 5(1):1700362. PubMed ID: 29375966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocurrent Enhancement by a Rapid Thermal Treatment of Nanodisk-Shaped SnS Photocathodes.
    Patel M; Kumar M; Kim J; Kim YK
    J Phys Chem Lett; 2017 Dec; 8(24):6099-6105. PubMed ID: 29210580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable and Efficient CuO Based Photocathode through Oxygen-Rich Composition and Au-Pd Nanostructure Incorporation for Solar-Hydrogen Production.
    Masudy-Panah S; Siavash Moakhar R; Chua CS; Kushwaha A; Dalapati GK
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27596-27606. PubMed ID: 28731678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying Copper Vacancies and Their Role in the CuO Based Photocathode for Water Splitting.
    Wang Z; Zhang L; Schülli TU; Bai Y; Monny SA; Du A; Wang L
    Angew Chem Int Ed Engl; 2019 Dec; 58(49):17604-17609. PubMed ID: 31560406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VS
    Gopalakrishnan S; Paulraj G; Eswaran MK; Ray A; Singh N; Jeganathan K
    Chemosphere; 2022 Sep; 302():134708. PubMed ID: 35490761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Engineering of Photocathodes based on Polythiophene Organic Semiconductors for Photoelectrochemical Hydrogen Generation.
    Zhao Z; Zhan S; Feng L; Liu C; Ahlquist MSG; Wu X; Fan K; Li F; Sun L
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40602-40611. PubMed ID: 34403243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting.
    Varadhan P; Fu HC; Priante D; Retamal JR; Zhao C; Ebaid M; Ng TK; Ajia I; Mitra S; Roqan IS; Ooi BS; He JH
    Nano Lett; 2017 Mar; 17(3):1520-1528. PubMed ID: 28177248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.