These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 35608388)

  • 1. Relationship between flightlessness and brain morphology among Rallidae.
    Nakao T; Yamasaki T; Ogihara N; Shimada M
    J Anat; 2022 Sep; 241(3):776-788. PubMed ID: 35608388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flightlessness and phylogeny amongst endemic rails (Aves:Rallidae) of the New Zealand region.
    Trewick SA
    Philos Trans R Soc Lond B Biol Sci; 1997 Apr; 352(1352):429-46. PubMed ID: 9163823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flightless birds are not neuroanatomical analogs of non-avian dinosaurs.
    Gold MEL; Watanabe A
    BMC Evol Biol; 2018 Dec; 18(1):190. PubMed ID: 30545287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convergent morphological responses to loss of flight in rails (Aves: Rallidae).
    Gaspar J; Gibb GC; Trewick SA
    Ecol Evol; 2020 Jul; 10(13):6186-6207. PubMed ID: 32724507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flightless rails endemic to islands have lower energy expenditures and clutch sizes than flighted rails on islands and continents.
    McNab BK; Ellis HI
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Nov; 145(3):295-311. PubMed ID: 16632395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flightlessness affects cranial morphology in birds.
    Gussekloo SW; Cubo J
    Zoology (Jena); 2013 Apr; 116(2):75-84. PubMed ID: 23337125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trait-dependent dispersal in rails (Aves: Rallidae): Historical biogeography of a cosmopolitan bird clade.
    Garcia-R JC; Matzke NJ
    Mol Phylogenet Evol; 2021 Jun; 159():107106. PubMed ID: 33601027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in avian brain shape: relationship with size and orbital shape.
    Kawabe S; Shimokawa T; Miki H; Matsuda S; Endo H
    J Anat; 2013 Nov; 223(5):495-508. PubMed ID: 24020351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid loss of flight in the Aldabra white-throated rail.
    van de Crommenacker J; Bunbury N; Jackson HA; Nupen LJ; Wanless R; Fleischer-Dogley F; Groombridge JJ; Warren BH
    PLoS One; 2019; 14(12):e0226064. PubMed ID: 31869373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paleoneurology of stem palaeognaths clarifies the plesiomorphic condition of the crown bird central nervous system.
    Widrig KE; Navalón G; Field DJ
    J Morphol; 2024 Jun; 285(6):e21710. PubMed ID: 38760949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictable evolution toward flightlessness in volant island birds.
    Wright NA; Steadman DW; Witt CC
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4765-70. PubMed ID: 27071105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin of the world's smallest flightless bird, the Inaccessible Island Rail Atlantisia rogersi (Aves: Rallidae).
    Stervander M; Ryan PG; Melo M; Hansson B
    Mol Phylogenet Evol; 2019 Jan; 130():92-98. PubMed ID: 30321695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De-novo assembly of four rail (Aves: Rallidae) genomes: A resource for comparative genomics.
    Gaspar J; Trewick SA; Gibb GC
    Ecol Evol; 2024 Jul; 14(7):e11694. PubMed ID: 39026944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiphase progenetic development shaped the brain of flying archosaurs.
    Beyrand V; Voeten DFAE; Bureš S; Fernandez V; Janáček J; Jirák D; Rauhut O; Tafforeau P
    Sci Rep; 2019 Jul; 9(1):10807. PubMed ID: 31346192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative brain morphology of Neotropical parrots (Aves, Psittaciformes) inferred from virtual 3D endocasts.
    Carril J; Tambussi CP; Degrange FJ; Benitez Saldivar MJ; Picasso MB
    J Anat; 2016 Aug; 229(2):239-51. PubMed ID: 26053196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the spatio-temporal threats, conservation hotspots and conservation gaps for the most extinction-prone bird family (Aves: Rallidae).
    Lévêque L; Buettel JC; Carver S; Brook BW
    R Soc Open Sci; 2021 Sep; 8(9):210262. PubMed ID: 34527269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Five new extinct species of rails (Aves: Gruiformes: Rallidae) from the Macaronesian Islands (North Atlantic Ocean).
    Alcover JA; Pieper H; Pereira F; Rando JC
    Zootaxa; 2015 Dec; 4057(2):151-90. PubMed ID: 26701473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphometric study of phylogenetic and ecologic signals in procyonid (mammalia: carnivora) endocasts.
    Ahrens HE
    Anat Rec (Hoboken); 2014 Dec; 297(12):2318-30. PubMed ID: 25066912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endocranial anatomy of the charadriiformes: sensory system variation and the evolution of wing-propelled diving.
    Smith NA; Clarke JA
    PLoS One; 2012; 7(11):e49584. PubMed ID: 23209585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gradual evolution towards flightlessness in steamer ducks.
    Campagna L; McCracken KG; Lovette IJ
    Evolution; 2019 Sep; 73(9):1916-1926. PubMed ID: 31106403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.