These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 35608395)
1. Breaking the Linear Relation in the Dissociation of Nitrogen on Iron Surfaces. Liu D; Zhao W; Yuan Q Chemphyschem; 2022 Sep; 23(17):e202200147. PubMed ID: 35608395 [TBL] [Abstract][Full Text] [Related]
2. Phosphorus Modification of Iron: Mechanistic Insights into Ammonia Synthesis on Fe Almithn A Molecules; 2024 Apr; 29(8):. PubMed ID: 38675713 [TBL] [Abstract][Full Text] [Related]
3. Engaging the Concepts of Bimetallicity and Mechanical Strain for N Elmutasim O; Maghrabi LM; Dhawale DS; Polychronopoulou K ACS Appl Mater Interfaces; 2024 Oct; 16(41):56254-70. PubMed ID: 39370605 [TBL] [Abstract][Full Text] [Related]
4. BEP relations for N2 dissociation over stepped transition metal and alloy surfaces. Munter TR; Bligaard T; Christensen CH; Nørskov JK Phys Chem Chem Phys; 2008 Sep; 10(34):5202-6. PubMed ID: 18728861 [TBL] [Abstract][Full Text] [Related]
5. Elementary kinetics of nitrogen electroreduction on Fe surfaces. Maheshwari S; Rostamikia G; Janik MJ J Chem Phys; 2019 Jan; 150(4):041708. PubMed ID: 30709282 [TBL] [Abstract][Full Text] [Related]
6. Development and Assessment of a Criterion for the Application of Brønsted-Evans-Polanyi Relations for Dissociation Catalytic Reactions at Surfaces. Ding ZB; Maestri M Ind Eng Chem Res; 2019 Jun; 58(23):9864-9874. PubMed ID: 31303692 [TBL] [Abstract][Full Text] [Related]
7. Operando probing of the surface chemistry during the Haber-Bosch process. Goodwin CM; Lömker P; Degerman D; Davies B; Shipilin M; Garcia-Martinez F; Koroidov S; Katja Mathiesen J; Rameshan R; Rodrigues GLS; Schlueter C; Amann P; Nilsson A Nature; 2024 Jan; 625(7994):282-286. PubMed ID: 38200297 [TBL] [Abstract][Full Text] [Related]
8. Excited-State N Martirez JM; Carter EA J Am Chem Soc; 2017 Mar; 139(12):4390-4398. PubMed ID: 28267326 [TBL] [Abstract][Full Text] [Related]
9. Reaction Mechanisms, Kinetics, and Improved Catalysts for Ammonia Synthesis from Hierarchical High Throughput Catalyst Design. Fuller J; An Q; Fortunelli A; Goddard WA Acc Chem Res; 2022 Apr; 55(8):1124-1134. PubMed ID: 35387450 [TBL] [Abstract][Full Text] [Related]
10. Heterogeneous Fe Liu JC; Ma XL; Li Y; Wang YG; Xiao H; Li J Nat Commun; 2018 Apr; 9(1):1610. PubMed ID: 29686395 [TBL] [Abstract][Full Text] [Related]
11. Theoretical Approach toward a Mild Condition Haber-Bosch Process on the Zeolite Catalyst with Confined Dual Active Sites. Liu C; Xu G; Wang T JACS Au; 2023 Dec; 3(12):3374-3380. PubMed ID: 38155645 [TBL] [Abstract][Full Text] [Related]
12. Highly Efficient Nitrogen Reduction to Ammonia through the Cooperation of Plasma and Porous Metal-Organic Framework Reactors with Confined Water. Guo S; Zhang J; Fan G; Shen A; Wang X; Guo Y; Ding J; Han C; Gu X; Wu L Angew Chem Int Ed Engl; 2024 Sep; 63(39):e202409698. PubMed ID: 38924667 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical N Sahoo SK; Heske J; Antonietti M; Qin Q; Oschatz M; Kühne TD ACS Appl Energy Mater; 2020 Oct; 3(10):10061-10069. PubMed ID: 33134880 [TBL] [Abstract][Full Text] [Related]
14. Vacancy-enabled N Ye TN; Park SW; Lu Y; Li J; Sasase M; Kitano M; Tada T; Hosono H Nature; 2020 Jul; 583(7816):391-395. PubMed ID: 32669696 [TBL] [Abstract][Full Text] [Related]
15. A thermodynamic and kinetic study of the catalytic performance of Fe, Mo, Rh and Ru for the electrochemical nitrogen reduction reaction. Shi JL; Xiang SQ; Zhang W; Zhao LB Phys Chem Chem Phys; 2020 Nov; 22(44):25973-25981. PubMed ID: 33165454 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic Constraints in Using AuM (M = Fe, Co, Ni, and Mo) Alloys as N₂ Dissociation Catalysts: Functionalizing a Plasmon-Active Metal. Martirez JM; Carter EA ACS Nano; 2016 Feb; 10(2):2940-9. PubMed ID: 26831377 [TBL] [Abstract][Full Text] [Related]
17. Boosting Electrocatalytic Ammonia Synthesis of Bio-Inspired Porous Mo-Doped Hematite via Nitrogen Activation. Niu ZY; Jiao L; Zhang T; Zhao XM; Wang XF; Tan Z; Liu LZ; Chen S; Song XZ ACS Appl Mater Interfaces; 2022 Dec; 14(50):55559-55567. PubMed ID: 36479880 [TBL] [Abstract][Full Text] [Related]
18. Computational Screening of First-Row Transition-Metal Based Alloy Catalysts-Ligand Induced N Das A; Mandal SC; Nair AS; Pathak B ACS Phys Chem Au; 2022 Mar; 2(2):125-135. PubMed ID: 36855504 [TBL] [Abstract][Full Text] [Related]
19. Co-Doped Fe Chen X; Yin H; Yang X; Zhang W; Xiao D; Lu Z; Zhang Y; Zhang P Inorg Chem; 2022 Dec; 61(49):20123-20132. PubMed ID: 36441161 [TBL] [Abstract][Full Text] [Related]
20. Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst. Wang X; Peng X; Chen W; Liu G; Zheng A; Zheng L; Ni J; Au CT; Jiang L Nat Commun; 2020 Jan; 11(1):653. PubMed ID: 32005833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]