These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35608554)

  • 1. Consistent Picture of Phosphate-Divalent Cation Binding from Models with Implicit and Explicit Electronic Polarization.
    Puyo-Fourtine J; Juillé M; Hénin J; Clavaguéra C; Duboué-Dijon E
    J Phys Chem B; 2022 Jun; 126(22):4022-4034. PubMed ID: 35608554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force fields for divalent cations based on single-ion and ion-pair properties.
    Mamatkulov S; Fyta M; Netz RR
    J Chem Phys; 2013 Jan; 138(2):024505. PubMed ID: 23320702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking polarizable and non-polarizable force fields for Ca
    Amin KS; Hu X; Salahub DR; Baldauf C; Lim C; Noskov S
    J Chem Phys; 2020 Oct; 153(14):144102. PubMed ID: 33086838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of interactions between metal ions and protein model compounds by energy decomposition analyses and the AMOEBA force field.
    Jing Z; Qi R; Liu C; Ren P
    J Chem Phys; 2017 Oct; 147(16):161733. PubMed ID: 29096462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining the polarizable Drude force field with a continuum electrostatic Poisson-Boltzmann implicit solvation model.
    Aleksandrov A; Lin FY; Roux B; MacKerell AD
    J Comput Chem; 2018 Aug; 39(22):1707-1719. PubMed ID: 29737546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable Indirect Free Energy Method Applied to Divalent Cation-Metalloprotein Binding.
    Litman J; Thiel AC; Schnieders MJ
    J Chem Theory Comput; 2019 Aug; 15(8):4602-4614. PubMed ID: 31268700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum effects in cation interactions with first and second coordination shell ligands in metalloproteins.
    Ngo V; da Silva MC; Kubillus M; Li H; Roux B; Elstner M; Cui Q; Salahub DR; Noskov SY
    J Chem Theory Comput; 2015 Oct; 11(10):4992-5001. PubMed ID: 26574284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free energy simulations of a GTPase: GTP and GDP binding to archaeal initiation factor 2.
    Satpati P; Clavaguéra C; Ohanessian G; Simonson T
    J Phys Chem B; 2011 May; 115(20):6749-63. PubMed ID: 21534562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-Grained Parameters for Divalent Cations within the SIRAH Force Field.
    Klein F; Cáceres D; Carrasco MA; Tapia JC; Caballero J; Alzate-Morales J; Pantano S
    J Chem Inf Model; 2020 Aug; 60(8):3935-3943. PubMed ID: 32687361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory and simulations for RNA folding in mixtures of monovalent and divalent cations.
    Nguyen HT; Hori N; Thirumalai D
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21022-21030. PubMed ID: 31570624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarizable AMOEBA Model for Simulating Mg
    Delgado JM; Nagy PR; Varma S
    J Chem Inf Model; 2024 Jan; 64(2):378-392. PubMed ID: 38051630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pairwise-additive and polarizable atomistic force fields for molecular dynamics simulations of proteins.
    Lemkul JA
    Prog Mol Biol Transl Sci; 2020; 170():1-71. PubMed ID: 32145943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of Divalent Cations to Insulin: Capillary Electrophoresis and Molecular Simulations.
    Duboué-Dijon E; Delcroix P; Martinez-Seara H; Hladílková J; Coufal P; Křížek T; Jungwirth P
    J Phys Chem B; 2018 May; 122(21):5640-5648. PubMed ID: 29360367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards accurate solvation dynamics of divalent cations in water using the polarizable amoeba force field: From energetics to structure.
    Piquemal JP; Perera L; Cisneros GA; Ren P; Pedersen LG; Darden TA
    J Chem Phys; 2006 Aug; 125(5):054511. PubMed ID: 16942230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Cation Binding to Lipid Bilayers with Negatively Charged POPS by Effective Inclusion of Electronic Polarization.
    Melcr J; Ferreira TM; Jungwirth P; Ollila OHS
    J Chem Theory Comput; 2020 Jan; 16(1):738-748. PubMed ID: 31762275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd.
    Duguid J; Bloomfield VA; Benevides J; Thomas GJ
    Biophys J; 1993 Nov; 65(5):1916-28. PubMed ID: 8298021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling Electronic Polarizability Changes in the Course of a Magnesium Ion Water Ligand Exchange Process.
    Kurnikov IV; Kurnikova M
    J Phys Chem B; 2015 Aug; 119(32):10275-86. PubMed ID: 26109375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and thermodynamics of Mg:phosphate interactions in water: a simulation study.
    Kumar M; Simonson T; Ohanessian G; Clavaguéra C
    Chemphyschem; 2015 Feb; 16(3):658-65. PubMed ID: 25528981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force fields for monovalent and divalent metal cations in TIP3P water based on thermodynamic and kinetic properties.
    Mamatkulov S; Schwierz N
    J Chem Phys; 2018 Feb; 148(7):074504. PubMed ID: 29471634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.