BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35608632)

  • 1. Non-metabolic functions of phosphofructokinase-1 orchestrate tumor cellular invasion and genome maintenance under bevacizumab therapy.
    Lim YC; Jensen KE; Aguilar-Morante D; Vardouli L; Vitting-Seerup K; Gimple RC; Wu Q; Pedersen H; Elbaek KJ; Gromova I; Ihnatko R; Kristensen BW; Petersen JK; Skjoth-Rasmussen J; Flavahan W; Rich JN; Hamerlik P
    Neuro Oncol; 2023 Feb; 25(2):248-260. PubMed ID: 35608632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia upregulates HIG2 expression and contributes to bevacizumab resistance in glioblastoma.
    Mao XG; Wang C; Liu DY; Zhang X; Wang L; Yan M; Zhang W; Zhu J; Li ZC; Mi C; Tian JY; Hou GD; Miao SY; Song ZX; Li JC; Xue XY
    Oncotarget; 2016 Jul; 7(30):47808-47820. PubMed ID: 27329597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CD44 expression in the tumor periphery predicts the responsiveness to bevacizumab in the treatment of recurrent glioblastoma.
    Nishikawa M; Inoue A; Ohnishi T; Yano H; Kanemura Y; Kohno S; Ohue S; Ozaki S; Matsumoto S; Suehiro S; Nakamura Y; Shigekawa S; Watanabe H; Kitazawa R; Tanaka J; Kunieda T
    Cancer Med; 2021 Mar; 10(6):2013-2025. PubMed ID: 33543833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EGFR amplification and classical subtype are associated with a poor response to bevacizumab in recurrent glioblastoma.
    Hovinga KE; McCrea HJ; Brennan C; Huse J; Zheng J; Esquenazi Y; Panageas KS; Tabar V
    J Neurooncol; 2019 Apr; 142(2):337-345. PubMed ID: 30680510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shedding of bevacizumab in tumour cells-derived extracellular vesicles as a new therapeutic escape mechanism in glioblastoma.
    Simon T; Pinioti S; Schellenberger P; Rajeeve V; Wendler F; Cutillas PR; King A; Stebbing J; Giamas G
    Mol Cancer; 2018 Aug; 17(1):132. PubMed ID: 30165850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Kinase Signaling in Resistance to Bevacizumab Therapy for Glioblastoma Multiforme.
    Ramezani S; Vousooghi N; Joghataei MT; Chabok SY
    Cancer Biother Radiopharm; 2019 Aug; 34(6):345-354. PubMed ID: 31411929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of hypoxia-induced autophagy in glioblastoma involves ATG9A.
    Abdul Rahim SA; Dirkse A; Oudin A; Schuster A; Bohler J; Barthelemy V; Muller A; Vallar L; Janji B; Golebiewska A; Niclou SP
    Br J Cancer; 2017 Sep; 117(6):813-825. PubMed ID: 28797031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia suppresses cylindromatosis (CYLD) expression to promote inflammation in glioblastoma: possible link to acquired resistance to anti-VEGF therapy.
    Guo J; Shinriki S; Su Y; Nakamura T; Hayashi M; Tsuda Y; Murakami Y; Tasaki M; Hide T; Takezaki T; Kuratsu J; Yamashita S; Ueda M; Li JD; Ando Y; Jono H
    Oncotarget; 2014 Aug; 5(15):6353-64. PubMed ID: 25071012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A retrospective analysis of GSE84010: Cell adhesion molecules might contribute to bevacizumab resistance in glioblastoma.
    Fu M; Hussain A; Dong Y; Fei Y
    J Clin Neurosci; 2021 Apr; 86():110-115. PubMed ID: 33775313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress Glioblastoma Tumor Growth.
    Lee J; Shin YJ; Lee K; Cho HJ; Sa JK; Lee SY; Kim SH; Lee J; Yoon Y; Nam DH
    Cancer Res Treat; 2018 Jul; 50(3):1009-1022. PubMed ID: 29129044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive analysis of glycolytic enzymes as therapeutic targets in the treatment of glioblastoma.
    Sanzey M; Abdul Rahim SA; Oudin A; Dirkse A; Kaoma T; Vallar L; Herold-Mende C; Bjerkvig R; Golebiewska A; Niclou SP
    PLoS One; 2015; 10(5):e0123544. PubMed ID: 25932951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bevacizumab dose adjustment to improve clinical outcomes of glioblastoma.
    García-Romero N; Palacín-Aliana I; Madurga R; Carrión-Navarro J; Esteban-Rubio S; Jiménez B; Collazo A; Pérez-Rodríguez F; Ortiz de Mendivil A; Fernández-Carballal C; García-Duque S; Diamantopoulos-Fernández J; Belda-Iniesta C; Prat-Acín R; Sánchez-Gómez P; Calvo E; Ayuso-Sacido A
    BMC Med; 2020 Jun; 18(1):142. PubMed ID: 32564774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased Antiangiogenic Effect by Blocking CCL2-dependent Macrophages in a Rodent Glioblastoma Model: Correlation Study with Dynamic Susceptibility Contrast Perfusion MRI.
    Cho HR; Kumari N; Thi Vu H; Kim H; Park CK; Choi SH
    Sci Rep; 2019 Jul; 9(1):11085. PubMed ID: 31366997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VEGF-C sustains VEGFR2 activation under bevacizumab therapy and promotes glioblastoma maintenance.
    Michaelsen SR; Staberg M; Pedersen H; Jensen KE; Majewski W; Broholm H; Nedergaard MK; Meulengracht C; Urup T; Villingshøj M; Lukacova S; Skjøth-Rasmussen J; Brennum J; Kjær A; Lassen U; Stockhausen MT; Poulsen HS; Hamerlik P
    Neuro Oncol; 2018 Oct; 20(11):1462-1474. PubMed ID: 29939339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy.
    Castro BA; Flanigan P; Jahangiri A; Hoffman D; Chen W; Kuang R; De Lay M; Yagnik G; Wagner JR; Mascharak S; Sidorov M; Shrivastav S; Kohanbash G; Okada H; Aghi MK
    Oncogene; 2017 Jun; 36(26):3749-3759. PubMed ID: 28218903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preclinical impact of bevacizumab on brain and tumor distribution of irinotecan and temozolomide.
    Goldwirt L; Beccaria K; Carpentier A; Idbaih A; Schmitt C; Levasseur C; Labussiere M; Milane A; Farinotti R; Fernandez C
    J Neurooncol; 2015 Apr; 122(2):273-81. PubMed ID: 25794638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspirin Affects Tumor Angiogenesis and Sensitizes Human Glioblastoma Endothelial Cells to Temozolomide, Bevacizumab, and Sunitinib, Impairing Vascular Endothelial Growth Factor-Related Signaling.
    Navone SE; Guarnaccia L; Cordiglieri C; Crisà FM; Caroli M; Locatelli M; Schisano L; Rampini P; Miozzo M; La Verde N; Riboni L; Campanella R; Marfia G
    World Neurosurg; 2018 Dec; 120():e380-e391. PubMed ID: 30144594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High expression of a novel splicing variant of VEGF, L-VEGF144 in glioblastoma multiforme is associated with a poorer prognosis in bevacizumab treatment.
    Cheng WY; Shen CC; Chiao MT; Liang YJ; Mao TF; Liu BS; Chen JP
    J Neurooncol; 2018 Oct; 140(1):37-47. PubMed ID: 29909500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of bevacizumab resistance increased by expression of BCAT1 in IDH1 wild-type glioblastoma: application of DSC perfusion MR imaging.
    Cho HR; Hong B; Kim H; Park CK; Park SH; Park S; Choi SH
    Oncotarget; 2016 Oct; 7(43):69606-69615. PubMed ID: 27626306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of Combination Therapy with MET and VEGF Inhibitors for MET-overexpressing Glioblastoma.
    Okuda T; Tasaki T; Nakata S; Yamashita K; Yoshioka H; Izumoto S; Kato A; Fujita M
    Anticancer Res; 2017 Jul; 37(7):3871-3876. PubMed ID: 28668888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.