These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 35608753)

  • 1. CRISPR-Based Genome-Editing Tools for Huntington's Disease Research and Therapy.
    Qin Y; Li S; Li XJ; Yang S
    Neurosci Bull; 2022 Nov; 38(11):1397-1408. PubMed ID: 35608753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potential of gene editing for Huntington's disease.
    Duan W; Urani E; Mattson MP
    Trends Neurosci; 2023 May; 46(5):365-376. PubMed ID: 36907678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9 Mediated Therapeutic Approach in Huntington's Disease.
    Alkanli SS; Alkanli N; Ay A; Albeniz I
    Mol Neurobiol; 2023 Mar; 60(3):1486-1498. PubMed ID: 36482283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of New Isogenic Models of Huntington's Disease Using CRISPR-Cas9 Technology.
    Dabrowska M; Ciolak A; Kozlowska E; Fiszer A; Olejniczak M
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32182692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular vesicle and CRISPR gene therapy: Current applications in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease.
    Akyuz E; Aslan FS; Gokce E; Ilmaz O; Topcu F; Kakac S
    Eur J Neurosci; 2024 Oct; 60(8):6057-6090. PubMed ID: 39297377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9 Editing of the Mutant Huntingtin Allele In Vitro and In Vivo.
    Monteys AM; Ebanks SA; Keiser MS; Davidson BL
    Mol Ther; 2017 Jan; 25(1):12-23. PubMed ID: 28129107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington's disease.
    Yan S; Zheng X; Lin Y; Li C; Liu Z; Li J; Tu Z; Zhao Y; Huang C; Chen Y; Li J; Song X; Han B; Wang W; Liang W; Lai L; Li XJ; Li S
    Nat Biomed Eng; 2023 May; 7(5):629-646. PubMed ID: 36797418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring molecular mechanisms, therapeutic strategies, and clinical manifestations of Huntington's disease.
    Shafie A; Ashour AA; Anwar S; Anjum F; Hassan MI
    Arch Pharm Res; 2024 Jun; 47(6):571-595. PubMed ID: 38764004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An RNA-targeting CRISPR-Cas13d system alleviates disease-related phenotypes in Huntington's disease models.
    Morelli KH; Wu Q; Gosztyla ML; Liu H; Yao M; Zhang C; Chen J; Marina RJ; Lee K; Jones KL; Huang MY; Li A; Smith-Geater C; Thompson LM; Duan W; Yeo GW
    Nat Neurosci; 2023 Jan; 26(1):27-38. PubMed ID: 36510111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR takes on Huntington's disease.
    Eisenstein M
    Nature; 2018 May; 557(7707):S42-S43. PubMed ID: 29844549
    [No Abstract]   [Full Text] [Related]  

  • 11. Modern Genome Editing Technologies in Huntington's Disease Research.
    Malankhanova TB; Malakhova AA; Medvedev SP; Zakian SM
    J Huntingtons Dis; 2017; 6(1):19-31. PubMed ID: 28128770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas9 Mediated Gene-Silencing of the Mutant Huntingtin Gene in an In Vitro Model of Huntington's Disease.
    Kolli N; Lu M; Maiti P; Rossignol J; Dunbar GL
    Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28368337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9-Mediated Genome Editing for Huntington's Disease.
    Vachey G; Déglon N
    Methods Mol Biol; 2018; 1780():463-481. PubMed ID: 29856031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limitations of Dual-Single Guide RNA CRISPR Strategies for the Treatment of Central Nervous System Genetic Disorders.
    Duarte F; Vachey G; Caron NS; Sipion M; Rey M; Perrier AL; Hayden MR; Déglon N
    Hum Gene Ther; 2023 Sep; 34(17-18):958-974. PubMed ID: 37658843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 novel therapeutic road for the treatment of neurodegenerative diseases.
    Karimian A; Gorjizadeh N; Alemi F; Asemi Z; Azizian K; Soleimanpour J; Malakouti F; Targhazeh N; Majidinia M; Yousefi B
    Life Sci; 2020 Oct; 259():118165. PubMed ID: 32735884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How has CRISPR transformed therapeutic drug discovery?
    Parker J
    Biotechniques; 2023 Mar; 74(3):119-121. PubMed ID: 37083429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silencing of the Mutant Huntingtin Gene through CRISPR-Cas9 Improves the Mitochondrial Biomarkers in an In Vitro Model of Huntington's Disease.
    Dunbar GL; Koneru S; Kolli N; Sandstrom M; Maiti P; Rossignol J
    Cell Transplant; 2019 Apr; 28(4):460-463. PubMed ID: 30947515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allele-Specific Knockdown of Mutant Huntingtin Protein via Editing at Coding Region Single Nucleotide Polymorphism Heterozygosities.
    Oikemus SR; Pfister EL; Sapp E; Chase KO; Kennington LA; Hudgens E; Miller R; Zhu LJ; Chaudhary A; Mick EO; Sena-Esteves M; Wolfe SA; DiFiglia M; Aronin N; Brodsky MH
    Hum Gene Ther; 2022 Jan; 33(1-2):25-36. PubMed ID: 34376056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas9 mediated genome editing of Huntington's disease neurospheres.
    Han JY; Seo J; Choi Y; Im W; Ban JJ; Sung JJ
    Mol Biol Rep; 2023 Mar; 50(3):2127-2136. PubMed ID: 36550260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review).
    Alagoz M; Kherad N
    Int J Mol Med; 2020 Aug; 46(2):521-534. PubMed ID: 32467995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.