These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 35608753)

  • 21. Generation of Rhesus Macaque Embryos with Expanded CAG Trinucleotide Repeats in the
    Ryu J; Statz JP; Chan W; Oyama K; Custer M; Wienisch M; Chen R; Hanna CB; Hennebold JD
    Cells; 2024 May; 13(10):. PubMed ID: 38786052
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Next Generation Precision Medicine: CRISPR-mediated Genome Editing for the Treatment of Neurodegenerative Disorders.
    Raikwar SP; Kikkeri NS; Sakuru R; Saeed D; Zahoor H; Premkumar K; Mentor S; Thangavel R; Dubova I; Ahmed ME; Selvakumar GP; Kempuraj D; Zaheer S; Iyer SS; Zaheer A
    J Neuroimmune Pharmacol; 2019 Dec; 14(4):608-641. PubMed ID: 31011884
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review.
    Babačić H; Mehta A; Merkel O; Schoser B
    PLoS One; 2019; 14(2):e0212198. PubMed ID: 30794581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington's disease.
    Yang S; Chang R; Yang H; Zhao T; Hong Y; Kong HE; Sun X; Qin Z; Jin P; Li S; Li XJ
    J Clin Invest; 2017 Jun; 127(7):2719-2724. PubMed ID: 28628038
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA-seq analysis reveals significant transcriptome changes in huntingtin-null human neuroblastoma cells.
    Bensalel J; Xu H; Lu ML; Capobianco E; Wei J
    BMC Med Genomics; 2021 Jul; 14(1):176. PubMed ID: 34215255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenetic regulation in Huntington's disease.
    Hyeon JW; Kim AH; Yano H
    Neurochem Int; 2021 Sep; 148():105074. PubMed ID: 34038804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene targeting techniques for Huntington's disease.
    Fields E; Vaughan E; Tripu D; Lim I; Shrout K; Conway J; Salib N; Lee Y; Dhamsania A; Jacobsen M; Woo A; Xue H; Cao K
    Ageing Res Rev; 2021 Sep; 70():101385. PubMed ID: 34098113
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9.
    Shin JW; Kim KH; Chao MJ; Atwal RS; Gillis T; MacDonald ME; Gusella JF; Lee JM
    Hum Mol Genet; 2016 Oct; 25(20):4566-4576. PubMed ID: 28172889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Strategies for mutant gene expression silencing in Huntington’s disease therapy].
    Fiszer A; Nowak B
    Postepy Biochem; 2020 Mar; 66(1):1-9. PubMed ID: 33320475
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Huntingtin Lowering Strategies for Disease Modification in Huntington's Disease.
    Tabrizi SJ; Ghosh R; Leavitt BR
    Neuron; 2019 Mar; 101(5):801-819. PubMed ID: 30844400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene Therapy for Huntington's Disease Using Targeted Endonucleases.
    Dabrowska M; Olejniczak M
    Methods Mol Biol; 2020; 2056():269-284. PubMed ID: 31586354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research.
    Li ZH; Wang J; Xu JP; Wang J; Yang X
    Mil Med Res; 2023 Mar; 10(1):12. PubMed ID: 36895064
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Translating Antisense Technology into a Treatment for Huntington's Disease.
    Lane RM; Smith A; Baumann T; Gleichmann M; Norris D; Bennett CF; Kordasiewicz H
    Methods Mol Biol; 2018; 1780():497-523. PubMed ID: 29856033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Haplotyping SNPs for allele-specific gene editing of the expanded huntingtin allele using long-read sequencing.
    Fang L; Monteys AM; Dürr A; Keiser M; Cheng C; Harapanahalli A; Gonzalez-Alegre P; Davidson BL; Wang K
    HGG Adv; 2023 Jan; 4(1):100146. PubMed ID: 36262216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR-Cas9-Mediated Genome Editing Increases Lifespan and Improves Motor Deficits in a Huntington's Disease Mouse Model.
    Ekman FK; Ojala DS; Adil MM; Lopez PA; Schaffer DV; Gaj T
    Mol Ther Nucleic Acids; 2019 Sep; 17():829-839. PubMed ID: 31465962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Creating cell and animal models of human disease by genome editing using CRISPR/Cas9.
    Zarei A; Razban V; Hosseini SE; Tabei SMB
    J Gene Med; 2019 Apr; 21(4):e3082. PubMed ID: 30786106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetics of Huntington disease.
    Nance MA
    Handb Clin Neurol; 2017; 144():3-14. PubMed ID: 28947123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enabling Precision Medicine with CRISPR-Cas Genome Editing Technology: A Translational Perspective.
    Ilahibaks NF; Hulsbos MJ; Lei Z; Vader P; Sluijter JPG
    Adv Exp Med Biol; 2023; 1396():315-339. PubMed ID: 36454475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR editing in biological and biomedical investigation.
    Huang J; Wang Y; Zhao J
    J Cell Physiol; 2018 May; 233(5):3875-3891. PubMed ID: 28786481
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.