These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3560876)

  • 1. An application of the micropipette technique to the measurement of the mechanical properties of cultured bovine aortic endothelial cells.
    Sato M; Levesque MJ; Nerem RM
    J Biomech Eng; 1987 Feb; 109(1):27-34. PubMed ID: 3560876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress.
    Sato M; Ohshima N; Nerem RM
    J Biomech; 1996 Apr; 29(4):461-7. PubMed ID: 8964775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties.
    Sato M; Theret DP; Wheeler LT; Ohshima N; Nerem RM
    J Biomech Eng; 1990 Aug; 112(3):263-8. PubMed ID: 2214707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress.
    Sato M; Levesque MJ; Nerem RM
    Arteriosclerosis; 1987; 7(3):276-86. PubMed ID: 3593075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micropipette aspiration of substrate-attached cells to estimate cell stiffness.
    Oh MJ; Kuhr F; Byfield F; Levitan I
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 23051713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements.
    Theret DP; Levesque MJ; Sato M; Nerem RM; Wheeler LT
    J Biomech Eng; 1988 Aug; 110(3):190-9. PubMed ID: 3172738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microelastic mapping of living endothelial cells exposed to shear stress in relation to three-dimensional distribution of actin filaments.
    Sato M; Suzuki K; Ueki Y; Ohashi T
    Acta Biomater; 2007 May; 3(3):311-9. PubMed ID: 17055790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing cell adhesion by using micropipette aspiration.
    Hogan B; Babataheri A; Hwang Y; Barakat AI; Husson J
    Biophys J; 2015 Jul; 109(2):209-19. PubMed ID: 26200857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dynamic response of vascular endothelial cells to fluid shear stress.
    Dewey CF; Bussolari SR; Gimbrone MA; Davies PF
    J Biomech Eng; 1981 Aug; 103(3):177-85. PubMed ID: 7278196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disorganization of cultured vascular endothelial cell monolayers by fibrinogen fragment D.
    Dang CV; Bell WR; Kaiser D; Wong A
    Science; 1985 Mar; 227(4693):1487-90. PubMed ID: 4038818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesterol depletion increases membrane stiffness of aortic endothelial cells.
    Byfield FJ; Aranda-Espinoza H; Romanenko VG; Rothblat GH; Levitan I
    Biophys J; 2004 Nov; 87(5):3336-43. PubMed ID: 15347591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elongation of confluent endothelial cells in culture: the importance of fields of force in the associated alterations of their cytoskeletal structure.
    Thoumine O; Ziegler T; Girard PR; Nerem RM
    Exp Cell Res; 1995 Aug; 219(2):427-41. PubMed ID: 7641794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The elongation and orientation of cultured endothelial cells in response to shear stress.
    Levesque MJ; Nerem RM
    J Biomech Eng; 1985 Nov; 107(4):341-7. PubMed ID: 4079361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton.
    Satcher RL; Dewey CF
    Biophys J; 1996 Jul; 71(1):109-18. PubMed ID: 8804594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic cell mechanics and actin remodelling are dependent on the rate of applied pressure.
    Pravincumar P; Bader DL; Knight MM
    PLoS One; 2012; 7(9):e43938. PubMed ID: 22984454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the role of cell stiffness in modulation of volume-regulated anion channels.
    Byfield FJ; Hoffman BD; Romanenko VG; Fang Y; Crocker JC; Levitan I
    Acta Physiol (Oxf); 2006; 187(1-2):285-94. PubMed ID: 16734765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells?
    Pourati J; Maniotis A; Spiegel D; Schaffer JL; Butler JP; Fredberg JJ; Ingber DE; Stamenovic D; Wang N
    Am J Physiol; 1998 May; 274(5):C1283-9. PubMed ID: 9612215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of the nucleus to the mechanical properties of endothelial cells.
    Caille N; Thoumine O; Tardy Y; Meister JJ
    J Biomech; 2002 Feb; 35(2):177-87. PubMed ID: 11784536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells.
    Davies PF; Dewey CF; Bussolari SR; Gordon EJ; Gimbrone MA
    J Clin Invest; 1984 Apr; 73(4):1121-9. PubMed ID: 6707208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells.
    Ohashi T; Ishii Y; Ishikawa Y; Matsumoto T; Sato M
    Biomed Mater Eng; 2002; 12(3):319-27. PubMed ID: 12446947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.