These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35608760)

  • 1. Degradation of organic dye wastewater by H2O2-enhanced aluminum carbon micro-electrolysis.
    Huang X; Chen Y; Sun D; Ma H; Wang G; Dong X
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72586-72597. PubMed ID: 35608760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation Characteristics of Color Index Direct Blue 15 Dye Using Iron-Carbon Micro-Electrolysis Coupled with H₂O₂.
    Yang B; Gao Y; Yan D; Xu H; Wang J
    Int J Environ Res Public Health; 2018 Jul; 15(7):. PubMed ID: 30029464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pretreatment of printing and dyeing wastewater by Fe/C micro-electrolysis combined with H
    Wang Y; Wu X; Yi J; Chen L; Lan T; Dai J
    Water Sci Technol; 2018 Jul; 2017(3):707-717. PubMed ID: 30016288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.
    Zhang Z
    Water Sci Technol; 2017 Dec; 76(11-12):3278-3288. PubMed ID: 29236007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of different scrap iron as anode in Fe-C micro-electrolysis system for textile wastewater degradation.
    Sun Z; Xu Z; Zhou Y; Zhang D; Chen W
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):26869-26882. PubMed ID: 31302892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the degradation of tetracycline in wastewater by micro-nano bubbles activated hydrogen peroxide.
    Chen Z; Fu M; Yuan C; Hu X; Bai J; Pan R; Lu P; Tang M
    Environ Technol; 2022 Sep; 43(23):3580-3590. PubMed ID: 33966616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect and mechanism of iron-carbon micro-electrolysis pretreatment of organic peroxide production wastewater.
    Yan Z; Xie S; Yang M
    Environ Sci Pollut Res Int; 2024 Feb; 31(8):11886-11897. PubMed ID: 38225488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decomplexation efficiency and mechanism of Cu(II)-EDTA by H
    Zhou D; Hu Y; Guo Q; Yuan W; Deng J; Dang Y
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1015-1025. PubMed ID: 28035604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal mechanism of persistent organic pollutants by Fe-C micro-electrolysis.
    Ren D; Huang Y; Li S; Wang Z; Zhang S; Zhang X; Gong X
    Environ Technol; 2022 Mar; 43(7):1050-1067. PubMed ID: 32838686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound-enhanced catalytic degradation of simulated dye wastewater using waste printed circuit boards: catalytic performance and artificial neuron network-based simulation.
    Jiang H; Zahmatkesh S; Yang J; Wang H; Wang C
    Environ Monit Assess; 2022 Nov; 195(1):144. PubMed ID: 36418598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel combination of iron-carbon composite and Fenton oxidation processes for high-concentration antibiotic wastewater treatment.
    Wang Z; Zeng Y; Tan Q; Shen Y; Shen L; Sun J; Zhao L; Lin H
    J Environ Manage; 2024 Mar; 354():120383. PubMed ID: 38382434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process.
    Li X; Wang Y; Yuan S; Li Z; Wang B; Huang J; Deng S; Yu G
    Water Res; 2014 Oct; 63():81-93. PubMed ID: 24981746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis.
    Cheng H; Xu W; Liu J; Wang H; He Y; Chen G
    J Hazard Mater; 2007 Jul; 146(1-2):385-92. PubMed ID: 17229523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study on treatment of methylene blue dye wastewater by different internal electrolysis systems and COD removal kinetics, thermodynamics and mechanism.
    Liu L; He D; Pan F; Huang R; Lin H; Zhang X
    Chemosphere; 2020 Jan; 238():124671. PubMed ID: 31473527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the treatment of simulated azo dye wastewater by a novel micro-electrolysis filler.
    Sun ZZ; Liu ZH; Han L; Qin DL; Yang G; Xing WH
    Water Sci Technol; 2019 Jun; 79(12):2279-2288. PubMed ID: 31411582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of different types of AOPs supported by hydrogen peroxide on the decolorization of methylene blue and viscose fibers dyeing wastewater.
    Bilici Z; Saleh M; Yabalak E; Khataee A; Dizge N
    Water Sci Technol; 2022 Jan; 85(1):77-89. PubMed ID: 35050867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrocatalytic/photoelectro-Fenton coupling system using a nanostructured photoanode for the oxidation of a textile dye: Kinetics study and oxidation pathway.
    Almeida LC; Silva BF; Zanoni MV
    Chemosphere; 2015 Oct; 136():63-71. PubMed ID: 25935699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode.
    Vidal J; Villegas L; Peralta-Hernández JM; Salazar González R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(4):289-96. PubMed ID: 26745322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristic analysis of s-Fe/Cu two-component micro-electrolysis materials and degradation of dye wastewater.
    Du X; Liu J; Liu Q; Li G; Jiang Y; Zhang Y
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):46574-46586. PubMed ID: 36717421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of treatment schemes comprising chromium-hydrogen peroxide-based advanced oxidation process for textile wastewater.
    Mondal P; Mukherji S; Garg A
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):88089-88100. PubMed ID: 35829886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.