BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35608771)

  • 1. Recycling of marble cutting waste additives in fired clay brick structure: a statistical approach to process parameters.
    Erdogmus E; Yaras A; Sutcu M; Gencel O
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):71936-71947. PubMed ID: 35608771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustainable Use of Marble Waste in Industrial Production of Fired Clay Bricks and Its Employment for Treatment of Flue Gases.
    Ahmad S; Hassan Shah MU; Ullah A; Shah SN; Rehan MS; Khan IA; Ahmad MI
    ACS Omega; 2021 Sep; 6(35):22559-22569. PubMed ID: 34514228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method.
    Sutcu M; Ozturk S; Yalamac E; Gencel O
    J Environ Manage; 2016 Oct; 181():185-192. PubMed ID: 27343435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks.
    Lin KL; Huang LS; Shie JL; Cheng CJ; Lee CH; Chang TC
    Environ Technol; 2013; 34(1-4):15-24. PubMed ID: 23530311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick.
    Hamid NJA; Kadir AA; Hashar NNH; Pietrusiewicz P; Nabiałek M; Wnuk I; Gucwa M; Palutkiewicz P; Hashim AA; Sarani NA; Nio AA; Noor NM; Jez B
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34074057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reuse of walnut shell waste in the development of fired ceramic bricks.
    Barnabas AA; Balogun OA; Akinwande AA; Ogbodo JF; Ademati AO; Dongo EI; Romanovski V
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11823-11837. PubMed ID: 36098915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of marble sludge waste in the manufacture of eco-friendly materials: applying the principles of the Circular Economy.
    Cobo-Ceacero CJ; Cotes-Palomino MT; Martínez-García C; Moreno-Maroto JM; Uceda-Rodríguez M
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):35399-35410. PubMed ID: 31001783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eco-Friendly Fired Brick Produced from Industrial Ash and Natural Clay: A Study of Waste Reuse.
    Doğan-Sağlamtimur N; Bilgil A; Szechyńska-Hebda M; Parzych S; Hebda M
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction to: Recycling of marble cutting waste additives in fired clay brick structure: a statistical approach to process parameters.
    Erdogmus E; Yaras A; Sutcu M; Gencel O
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):71948. PubMed ID: 35727519
    [No Abstract]   [Full Text] [Related]  

  • 10. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks.
    Eliche-Quesada D; Leite-Costa J
    Waste Manag; 2016 Feb; 48():323-333. PubMed ID: 26653359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A practical proposal for solving the world's cigarette butt problem: Recycling in fired clay bricks.
    Mohajerani A; Kadir AA; Larobina L
    Waste Manag; 2016 Jun; 52():228-44. PubMed ID: 26975623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manufacture of Sustainable Clay Bricks Using Waste from Secondary Aluminum Recycling as Raw Material.
    Bonet-Martínez E; Pérez-Villarejo L; Eliche-Quesada D; Castro E
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30513855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of Savannah Harbor river sediment as the primary raw material in production of fired brick.
    Mezencevova A; Yeboah NN; Burns SE; Kahn LF; Kurtis KE
    J Environ Manage; 2012 Dec; 113():128-36. PubMed ID: 23017584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Management of spent shea waste: An instrumental characterization and valorization in clay bricks construction.
    Adazabra AN; Viruthagiri G; Shanmugam N
    Waste Manag; 2017 Jun; 64():286-304. PubMed ID: 28336335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of fired construction brick from high sulfate-containing fly ash with boric acid addition.
    Başpinar MS; Kahraman E; Görhan G; Demir I
    Waste Manag Res; 2010 Jan; 28(1):4-10. PubMed ID: 19423597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling of sewage sludge in clay-free thermal insulation brick: assessment of microstructure, performance, and environment impact.
    Wu K; Hu Y; Xu L; Zhang L; Zhang X; Su Y; Yang Z
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):89184-89197. PubMed ID: 35849240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and recycling of textile sludge for energy-efficient brick production in Ethiopia.
    Beshah DA; Tiruye GA; Mekonnen YS
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):16272-16281. PubMed ID: 33387312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing.
    Mao L; Wu Y; Zhang W; Huang Q
    J Environ Manage; 2019 Feb; 231():780-787. PubMed ID: 30415171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volcanic Tuff as Secondary Raw Material in the Production of Clay Bricks.
    Cobîrzan N; Thalmaier G; Balog AA; Constantinescu H; Ceclan A; Nasui M
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental and Economic Benefits of Using Pomegranate Peel Waste for Insulation Bricks.
    Ragab A; Zouli N; Abutaleb A; Maafa IM; Ahmed MM; Yousef A
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.