BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35608771)

  • 21. Feasibility study of using brick made from municipal solid waste incinerator fly ash slag.
    Lin KL
    J Hazard Mater; 2006 Oct; 137(3):1810-6. PubMed ID: 16784805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Experimental and Empirical Study on the Use of Waste Marble Powder in Construction Material.
    Sufian M; Ullah S; Ostrowski KA; Ahmad A; Zia A; Śliwa-Wieczorek K; Siddiq M; Awan AA
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recycling of Cigarette Butts in Fired Clay Bricks: A New Laboratory Investigation.
    Kurmus H; Mohajerani A
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050481
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of using arsenic-iron sludge wastes in brick making.
    Hassan KM; Fukushi K; Turikuzzaman K; Moniruzzaman SM
    Waste Manag; 2014 Jun; 34(6):1072-8. PubMed ID: 24129213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving the Thermal Performance and Energy Efficiency of Buildings by Incorporating Biomass Waste into Clay Bricks.
    Ahmed S; El Attar ME; Zouli N; Abutaleb A; Maafa IM; Ahmed MM; Yousef A; Ragab A
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of Three Amu-Darya Basin Clays in Ceramic Brick Industry and Their Applications with Brick Waste.
    Korpayev S; Bayramov M; Durdyev S; Hamrayev H
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of recycled glass substitution on the physical and mechanical properties of clay bricks.
    Loryuenyong V; Panyachai T; Kaewsimork K; Siritai C
    Waste Manag; 2009 Oct; 29(10):2717-21. PubMed ID: 19545990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Utilization of Construction and Demolition Mix Waste in the Fired Brick Production: The Impact on Mechanical Properties.
    Dubale M; Vasić MV; Goel G; Kalamdhad A; Singh LB
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of Low-Temperature Sintering Building Bricks Using Drilling Cutting and Geopolymeric Technology.
    Lee WH; Hsieh YC; Wang HW; Ding YC; Cheng TW
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of Limestone Waste Addition for Fired Clay Bricks.
    Thalmaier G; Cobȋrzan N; Balog AA; Constantinescu H; Ceclan A; Voinea M; Marinca TF
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of eco-friendly porous fired clay bricks using pore-forming agents: a review.
    Bories C; Borredon ME; Vedrenne E; Vilarem G
    J Environ Manage; 2014 Oct; 143():186-96. PubMed ID: 24908498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transforming Marble Waste into High-Performance, Water-Resistant, and Thermally Insulative Hybrid Polymer Composites for Environmental Sustainability.
    Bakshi P; Pappu A; Patidar R; Gupta MK; Thakur VK
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32784940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of waste glass additions on quality of textile sludge-based bricks.
    Rahman A; Urabe T; Kishimoto N; Mizuhara S
    Environ Technol; 2015; 36(19):2443-50. PubMed ID: 25812619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluoride-immobilized co-processing and resource utilization of aluminum-electrolyzed spent cathode carbon in brick-fired kiln.
    Sang Y; Liu C; Yuan H; Chi Z; Ji L; Cao R; Gu Q
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):87527-87533. PubMed ID: 35809169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effective sludge management: Reuse of biowaste and sewer sediments for fired bricks.
    Nguyen HN; Dang HTT; Pham LTN; Nguyen HX; Tong KT; Pham TT; Nguyen KM; Tran HTM
    J Air Waste Manag Assoc; 2024 Jun; ():1-12. PubMed ID: 38916528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Utilization potential of silica fume in fired clay bricks.
    Baspinar MS; Demir I; Orhan M
    Waste Manag Res; 2010 Feb; 28(2):149-57. PubMed ID: 19748959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of Construction Material Using Wastewater: An Application of Circular Economy for Mass Production of Bricks.
    Ghafoor S; Hameed A; Shah SAR; Azab M; Faheem H; Nawaz MF; Iqbal F
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A study of gas emissions during the firing process from bricks incorporating biosolids.
    Ukwatta A; Mohajerani A; Setunge S; Eshtiaghi N
    Waste Manag; 2018 Apr; 74():413-426. PubMed ID: 29317158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A view of microstructure with technological behavior of waste incorporated ceramic bricks.
    Nirmala G; Viruthagiri G
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():76-80. PubMed ID: 25062052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Utilization of open pit burned household waste ash--a feasibility study in Dhaka.
    Haque MO; Sharif A
    Waste Manag Res; 2014 May; 32(5):397-405. PubMed ID: 24646568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.