These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35608966)

  • 1. Electron-Hole Excitation Induced Softening in Boron Carbide-Based Superhard Materials.
    He Y; Shen Y; Tang B; An Q
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25792-25801. PubMed ID: 35608966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dislocation-mediated shear amorphization in boron carbide.
    Reddy KM; Guo D; Song S; Cheng C; Han J; Wang X; An Q; Chen M
    Sci Adv; 2021 Feb; 7(8):. PubMed ID: 33597237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Properties and Deformation Behavior of Superhard Lightweight Nanocrystalline Ceramics.
    Jeong B; Lahkar S; An Q; Reddy KM
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36145016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-catalytic facile synthesis of superhard phase of boron carbide (B13C2) nanoflakes and nanoparticles.
    Xie SS; Su LT; Guo J; Vasylkiv O; Borodianska H; Xi Z; Krishnan GM; Su H; Tokl AI
    J Nanosci Nanotechnol; 2012 Jan; 12(1):596-603. PubMed ID: 22524026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superstrength through Nanotwinning.
    An Q; Goddard WA; Xie KY; Sim GD; Hemker KJ; Munhollon T; Toksoy MF; Haber RA
    Nano Lett; 2016 Dec; 16(12):7573-7579. PubMed ID: 27960511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activating Mobile Dislocation in Boron Carbide at Room Temperature via Al Doping.
    Li J; Luo K; An Q
    Phys Rev Lett; 2023 Mar; 130(11):116104. PubMed ID: 37001075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Predictions and Microwave Plasma Synthesis of Superhard Boron-Carbon Materials.
    Baker PA; Catledge SA; Harris SB; Ham KJ; Chen WC; Chen CC; Vohra YK
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30044407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide.
    Guo D; Song S; Luo R; Goddard WA; Chen M; Reddy KM; An Q
    Phys Rev Lett; 2018 Oct; 121(14):145504. PubMed ID: 30339450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear-Induced Brittle Failure along Grain Boundaries in Boron Carbide.
    Yang X; Coleman SP; Lasalvia JC; Goddard WA; An Q
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):5072-5080. PubMed ID: 29346723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel boron channel-based structure of boron carbide at high pressures.
    Zhang X; Zhao Y; Zhang M; Liu H; Yao Y; Cheng T; Chen H
    J Phys Condens Matter; 2017 Nov; 29(45):455401. PubMed ID: 28869218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicted boron-carbide compounds: a first-principles study.
    Wang de Y; Yan Q; Wang B; Wang YX; Yang J; Yang G
    J Chem Phys; 2014 Jun; 140(22):224704. PubMed ID: 24929411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the deformation mechanisms of boron carbide via silicon doping.
    Xiang S; Ma L; Yang B; Dieudonne Y; Pharr GM; Lu J; Yadav D; Hwang C; LaSalvia JC; Haber RA; Hemker KJ; Xie KY
    Sci Adv; 2019 Oct; 5(10):eaay0352. PubMed ID: 31692742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Properties and Atomic Explanation of Plastic Deformation for Diamond-Like BC₂.
    Zheng B; Zhang M; Chang S
    Materials (Basel); 2016 Jun; 9(7):. PubMed ID: 28773636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drastic Modification of Lattice Thermal Conductivity in Thermoelectrics Induced by Electron-Hole Pairs.
    An Q
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3911-3918. PubMed ID: 33438996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure.
    Ji C; Levitas VI; Zhu H; Chaudhuri J; Marathe A; Ma Y
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19108-12. PubMed ID: 23129624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric twins in boron rich boron carbide.
    Yang X; Goddard WA; An Q
    Phys Chem Chem Phys; 2018 May; 20(19):13340-13347. PubMed ID: 29717734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure and multifunctionality of high-boron transition metal borides
    Zhao B; Wang L; Tao Q; Zhu P
    J Phys Condens Matter; 2023 Feb; 35(17):. PubMed ID: 36758243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exfoliation of boron carbide into ultrathin nanosheets.
    Guo Y; Gupta A; Gilliam MS; Debnath A; Yousaf A; Saha S; Levin MD; Green AA; Singh AK; Wang QH
    Nanoscale; 2021 Jan; 13(3):1652-1662. PubMed ID: 33428702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic explanation of shear-induced amorphous band formation in boron carbide.
    An Q; Goddard WA; Cheng T
    Phys Rev Lett; 2014 Aug; 113(9):095501. PubMed ID: 25215991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superhard Boron-Rich Boron Carbide with Controlled Degree of Crystallinity.
    Chakrabarty K; Chen WC; Baker PA; Vijayan VM; Chen CC; Catledge SA
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.