These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 35609092)
1. Metric Learning-Based Fault Diagnosis and Anomaly Detection for Industrial Data With Intraclass Variance. Huang K; Wu S; Sun B; Yang C; Gui W IEEE Trans Neural Netw Learn Syst; 2022 May; PP():. PubMed ID: 35609092 [TBL] [Abstract][Full Text] [Related]
2. Current Only-Based Fault Diagnosis Method for Industrial Robot Control Cables. Kim H; Lee H; Kim SW Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271064 [TBL] [Abstract][Full Text] [Related]
3. A New Dual-Input Deep Anomaly Detection Method for Early Faults Warning of Rolling Bearings. Kang Y; Chen G; Wang H; Pan W; Wei X Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766068 [TBL] [Abstract][Full Text] [Related]
4. Contrastive Learning for Fault Detection and Diagnostics in the Context of Changing Operating Conditions and Novel Fault Types. Rombach K; Michau G; Fink O Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065164 [TBL] [Abstract][Full Text] [Related]
5. Wind turbine anomaly detection based on SCADA: A deep autoencoder enhanced by fault instances. Liu J; Yang G; Li X; Wang Q; He Y; Yang X ISA Trans; 2023 Aug; 139():586-605. PubMed ID: 37076374 [TBL] [Abstract][Full Text] [Related]
6. Bearing-Fault Diagnosis with Signal-to-RGB Image Mapping and Multichannel Multiscale Convolutional Neural Network. Xu M; Gao J; Zhang Z; Wang H Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359658 [TBL] [Abstract][Full Text] [Related]
7. Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning. Xu G; Liu M; Jiang Z; Söffker D; Shen W Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832449 [TBL] [Abstract][Full Text] [Related]
8. Bearing Fault Diagnosis Method Based on Convolutional Neural Network and Knowledge Graph. Li Z; Li Y; Sun Q; Qi B Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36359679 [TBL] [Abstract][Full Text] [Related]
9. Multilevel Fine Fault Diagnosis Method for Motors Based on Feature Extraction of Fractional Fourier Transform. Wu H; Ma X; Wen C Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214210 [TBL] [Abstract][Full Text] [Related]
10. Few-Shot Rolling Bearing Fault Diagnosis with Metric-Based Meta Learning. Wang S; Wang D; Kong D; Wang J; Li W; Zhou S Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33187173 [TBL] [Abstract][Full Text] [Related]
11. Unsupervised Fault Detection on Unmanned Aerial Vehicles: Encoding and Thresholding Approach. Park KH; Park E; Kim HK Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809830 [TBL] [Abstract][Full Text] [Related]
12. Multi-mode non-Gaussian variational autoencoder network with missing sources for anomaly detection of complex electromechanical equipment. Luo Q; Chen J; Zi Y; Chang Y; Feng Y ISA Trans; 2023 Mar; 134():144-158. PubMed ID: 36150902 [TBL] [Abstract][Full Text] [Related]
13. Few-shot bearing fault detection based on multi-dimensional convolution and attention mechanism. Xu Y; Song C; Wang C Math Biosci Eng; 2024 Mar; 21(4):4886-4907. PubMed ID: 38872519 [TBL] [Abstract][Full Text] [Related]
14. A deep transferable motion-adaptive fault detection method for industrial robots using a residual-convolutional neural network. Oh Y; Kim Y; Na K; Youn BD ISA Trans; 2022 Sep; 128(Pt B):521-534. PubMed ID: 34924171 [TBL] [Abstract][Full Text] [Related]
15. Interaction-Aware Graph Neural Networks for Fault Diagnosis of Complex Industrial Processes. Chen D; Liu R; Hu Q; Ding SX IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):6015-6028. PubMed ID: 34919524 [TBL] [Abstract][Full Text] [Related]
16. Deep-Compact-Clustering Based Anomaly Detection Applied to Electromechanical Industrial Systems. Arellano-Espitia F; Delgado-Prieto M; Gonzalez-Abreu AD; Saucedo-Dorantes JJ; Osornio-Rios RA Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502724 [TBL] [Abstract][Full Text] [Related]
17. Attention Recurrent Neural Network-Based Severity Estimation Method for Early-Stage Fault Diagnosis in Robot Harness Cable. Kim H; Lee H; Kim S; Kim SW Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300026 [TBL] [Abstract][Full Text] [Related]
18. An Intelligent Multi-Local Model Bearing Fault Diagnosis Method Using Small Sample Fusion. Zhou X; Li A; Han G Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37688019 [TBL] [Abstract][Full Text] [Related]
19. Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network. Li H; Huang J; Ji S Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31052295 [TBL] [Abstract][Full Text] [Related]
20. Bearing Fault Feature Extraction and Fault Diagnosis Method Based on Feature Fusion. Zhu H; He Z; Wei J; Wang J; Zhou H Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]