These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 35609106)
1. Learning Tensor Low-Rank Representation for Hyperspectral Anomaly Detection. Wang M; Wang Q; Hong D; Roy SK; Chanussot J IEEE Trans Cybern; 2023 Jan; 53(1):679-691. PubMed ID: 35609106 [TBL] [Abstract][Full Text] [Related]
2. Spatial Invariant Tensor Self-Representation Model for Hyperspectral Anomaly Detection. Sun S; Liu J; Li W IEEE Trans Cybern; 2024 May; 54(5):3120-3131. PubMed ID: 37021868 [TBL] [Abstract][Full Text] [Related]
3. Hyperspectral Anomaly Detection With Tensor Average Rank and Piecewise Smoothness Constraints. Sun S; Liu J; Chen X; Li W; Li H IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):8679-8692. PubMed ID: 35245203 [TBL] [Abstract][Full Text] [Related]
5. Removal of Mixed Noise in Hyperspectral Images Based on Subspace Representation and Nonlocal Low-Rank Tensor Decomposition. He C; Wei Y; Guo K; Han H Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257420 [TBL] [Abstract][Full Text] [Related]
6. Prior-Based Tensor Approximation for Anomaly Detection in Hyperspectral Imagery. Li L; Li W; Qu Y; Zhao C; Tao R; Du Q IEEE Trans Neural Netw Learn Syst; 2022 Mar; 33(3):1037-1050. PubMed ID: 33296310 [TBL] [Abstract][Full Text] [Related]
10. Weakly Supervised Low-Rank Representation for Hyperspectral Anomaly Detection. Xie W; Zhang X; Li Y; Lei J; Li J; Du Q IEEE Trans Cybern; 2021 Aug; 51(8):3889-3900. PubMed ID: 33961574 [TBL] [Abstract][Full Text] [Related]
11. Hyperspectral Anomaly Detection Based on Adaptive Low-Rank Transformed Tensor. Sun S; Liu J; Zhang Z; Li W IEEE Trans Neural Netw Learn Syst; 2024 Jul; 35(7):9787-9799. PubMed ID: 37021987 [TBL] [Abstract][Full Text] [Related]
12. Weighted Sparseness-Based Anomaly Detection for Hyperspectral Imagery. Lian X; Zhao E; Zheng W; Peng X; Li A; Zhen Z; Wen Y Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850660 [TBL] [Abstract][Full Text] [Related]
13. Spatial-Spectral Structured Sparse Low-Rank Representation for Hyperspectral Image Super-Resolution. Xue J; Zhao YQ; Bu Y; Liao W; Chan JC; Philips W IEEE Trans Image Process; 2021; 30():3084-3097. PubMed ID: 33596175 [TBL] [Abstract][Full Text] [Related]
14. Learning a Low Tensor-Train Rank Representation for Hyperspectral Image Super-Resolution. Dian R; Li S; Fang L IEEE Trans Neural Netw Learn Syst; 2019 Sep; 30(9):2672-2683. PubMed ID: 30624229 [TBL] [Abstract][Full Text] [Related]
15. Unsupervised dimensionality reduction of medical hyperspectral imagery in tensor space. Gao H; Wang M; Sun X; Cao X; Li C; Liu Q; Xu P Comput Methods Programs Biomed; 2023 Oct; 240():107724. PubMed ID: 37506600 [TBL] [Abstract][Full Text] [Related]
16. Dictionary trained attention constrained low rank and sparse autoencoder for hyperspectral anomaly detection. Hu X; Li Z; Luo L; Karimi HR; Zhang D Neural Netw; 2024 Oct; 181():106797. PubMed ID: 39413584 [TBL] [Abstract][Full Text] [Related]
17. Hyperspectral Image Denoising via Weighted Multidirectional Low-Rank Tensor Recovery. Su Y; Zhu H; Wong KC; Chang Y; Li X IEEE Trans Cybern; 2023 May; 53(5):2753-2766. PubMed ID: 36251897 [TBL] [Abstract][Full Text] [Related]
18. Hyperspectral Images Super-Resolution via Learning High-Order Coupled Tensor Ring Representation. Xu Y; Wu Z; Chanussot J; Wei Z IEEE Trans Neural Netw Learn Syst; 2020 Nov; 31(11):4747-4760. PubMed ID: 31902776 [TBL] [Abstract][Full Text] [Related]
19. Adaptive Rank and Structured Sparsity Corrections for Hyperspectral Image Restoration. Xie T; Li S; Lai J IEEE Trans Cybern; 2022 Sep; 52(9):8729-8740. PubMed ID: 33606649 [TBL] [Abstract][Full Text] [Related]
20. Matched Shrunken Cone Detector (MSCD): Bayesian Derivations and Case Studies for Hyperspectral Target Detection. Ziyu Wang ; Rui Zhu ; Fukui K; Jing-Hao Xue IEEE Trans Image Process; 2017 Nov; 26(11):5447-5461. PubMed ID: 28816671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]