These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35609192)

  • 1. Provable Boolean interaction recovery from tree ensemble obtained via random forests.
    Behr M; Wang Y; Li X; Yu B
    Proc Natl Acad Sci U S A; 2022 May; 119(22):e2118636119. PubMed ID: 35609192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iterative random forests to discover predictive and stable high-order interactions.
    Basu S; Kumbier K; Brown JB; Yu B
    Proc Natl Acad Sci U S A; 2018 Feb; 115(8):1943-1948. PubMed ID: 29351989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LANDMark: an ensemble approach to the supervised selection of biomarkers in high-throughput sequencing data.
    Rudar J; Porter TM; Wright M; Golding GB; Hajibabaei M
    BMC Bioinformatics; 2022 Mar; 23(1):110. PubMed ID: 35361114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method.
    Huang JC; Tsai YC; Wu PY; Lien YH; Chien CY; Kuo CF; Hung JF; Chen SC; Kuo CH
    Comput Methods Programs Biomed; 2020 Oct; 195():105536. PubMed ID: 32485511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MediBoost: a Patient Stratification Tool for Interpretable Decision Making in the Era of Precision Medicine.
    Valdes G; Luna JM; Eaton E; Simone CB; Ungar LH; Solberg TD
    Sci Rep; 2016 Nov; 6():37854. PubMed ID: 27901055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Consistent Random Forest Framework: Bernoulli Random Forests.
    Wang Y; Xia ST; Tang Q; Wu J; Zhu X
    IEEE Trans Neural Netw Learn Syst; 2018 Aug; 29(8):3510-3523. PubMed ID: 28816676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random forests ensemble classifier trained with data resampling strategy to improve cardiac arrhythmia diagnosis.
    Ozçift A
    Comput Biol Med; 2011 May; 41(5):265-71. PubMed ID: 21419401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the performance of decision tree (DT) algorithms and extreme learning machine (ELM) model in the prediction of water quality of the Upper Green River watershed.
    Anmala J; Turuganti V
    Water Environ Res; 2021 Nov; 93(11):2360-2373. PubMed ID: 34528328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Health Material Accessibility: Development of Machine Learning Algorithms.
    Ji M; Liu Y; Hao T
    JMIR Med Inform; 2021 Sep; 9(9):e29175. PubMed ID: 34468321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding Activity Prediction of Cyclin-Dependent Inhibitors.
    Saha I; Rak B; Bhowmick SS; Maulik U; Bhattacharjee D; Koch U; Lazniewski M; Plewczynski D
    J Chem Inf Model; 2015 Jul; 55(7):1469-82. PubMed ID: 26079845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of consensus machine learning-based models for the prediction of novel small molecules as potential anti-tubercular agents.
    Wani MA; Roy KK
    Mol Divers; 2022 Jun; 26(3):1345-1356. PubMed ID: 34110578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Antidepressant Treatment Response and Remission Using an Ensemble Machine Learning Framework.
    Lin E; Kuo PH; Liu YL; Yu YW; Yang AC; Tsai SJ
    Pharmaceuticals (Basel); 2020 Oct; 13(10):. PubMed ID: 33065962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new hybrid ensemble machine-learning model for severity risk assessment and post-COVID prediction system.
    Shakhovska N; Yakovyna V; Chopyak V
    Math Biosci Eng; 2022 Apr; 19(6):6102-6123. PubMed ID: 35603393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multiobjective Evolutionary Nonlinear Ensemble Learning With Evolutionary Feature Selection for Silicon Prediction in Blast Furnace.
    Wang X; Hu T; Tang L
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2080-2093. PubMed ID: 33661737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plausibility of Individual Decisions from Random Forests in Clinical Predictive Modelling Applications.
    Hayn D; Walch H; Stieg J; Kreiner K; Ebner H; Schreier G
    Stud Health Technol Inform; 2017; 236():328-335. PubMed ID: 28508814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multicenter random forest model for effective prognosis prediction in collaborative clinical research network.
    Li J; Tian Y; Zhu Y; Zhou T; Li J; Ding K; Li J
    Artif Intell Med; 2020 Mar; 103():101814. PubMed ID: 32143809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random generalized linear model: a highly accurate and interpretable ensemble predictor.
    Song L; Langfelder P; Horvath S
    BMC Bioinformatics; 2013 Jan; 14():5. PubMed ID: 23323760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.
    Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K
    Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.