BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35609238)

  • 1. Enhanced Chiral Recognition Abilities of Cyclodextrin Covalent Organic Frameworks via Chiral/Achiral Functional Modification.
    Wang X; Wu J; Liu X; Qiu X; Cao L; Ji Y
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25928-25936. PubMed ID: 35609238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral hydroxyl-controlled covalent organic framework-modified stationary phase for chromatographic enantioseparation.
    Ma M; Zhang Y; Huang F; Xu Y
    Mikrochim Acta; 2024 Mar; 191(4):203. PubMed ID: 38492084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile separation of enantiomers via covalent organic framework bonded stationary phase.
    Wang Y; Wang X; Sun Q; Li R; Ji Y
    Mikrochim Acta; 2021 Oct; 188(11):367. PubMed ID: 34617147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chirality-Controlled Mercapto-β-cyclodextrin Covalent Organic Frameworks for Selective Adsorption and Chromatographic Enantioseparation.
    Wu J; Li L; Cao L; Liu X; Li R; Ji Y
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27214-27222. PubMed ID: 37236148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of β-Cyclodextrin Covalent Organic Framework-Modified Chiral Stationary Phase for Chiral Separation.
    Wang Y; Zhuo S; Hou J; Li W; Ji Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48363-48369. PubMed ID: 31794183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclodextrin Incorporation into Covalent Organic Frameworks Enables Extensive Liquid and Gas Chromatographic Enantioseparations.
    Yuan C; Wang Z; Xiong W; Huang Z; Lai Y; Fu S; Dong J; Duan A; Hou X; Yuan LM; Cui Y
    J Am Chem Soc; 2023 Aug; 145(34):18956-18967. PubMed ID: 37596711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Recent developments in the application of covalent organic frameworks in capillary electrochromatography].
    Wang GX; Chen YL; Lü WJ; Chen HL; Chen XG
    Se Pu; 2023 Oct; 41(10):835-842. PubMed ID: 37875406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A covalent organic framework for chiral capillary electrochromatography using a cyclodextrin mobile phase additive.
    Gao L; Zhao X; Qin S; Dong Q; Hu X; Chu H
    Chirality; 2022 Mar; 34(3):537-549. PubMed ID: 34997664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-Cyclodextrin-modified covalent organic framework as chiral stationary phase for the separation of amino acids and β-blockers by capillary electrochromatography.
    Li Y; Lin X; Qin S; Gao L; Tang Y; Liu S; Wang Y
    Chirality; 2020 Jul; 32(7):1008-1019. PubMed ID: 32329149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral core-shell microspheres β-CD-COF@SiO
    Xu NY; Guo P; Chen JK; Zhang JH; Wang BJ; Xie SM; Yuan LM
    Talanta; 2021 Dec; 235():122754. PubMed ID: 34517622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation.
    Qian HL; Yang CX; Yan XP
    Nat Commun; 2016 Jul; 7():12104. PubMed ID: 27401541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-pot method for the synthesis of β-cyclodextrin and covalent organic framework functionalized chiral stationary phase with mixed-mode retention mechanism.
    Zheng Y; Wan M; Zhou J; Dai X; Yang H; Xia Z; Wang L
    J Chromatogr A; 2022 Jan; 1662():462731. PubMed ID: 34915189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the separation ability differences of three covalent organic frameworks as coated materials in capillary electrochromatography.
    Lv W; Zhang Y; Wang G; Zhao L; Wang F; Chen Y; Chen H; Zhang X; Chen X
    J Chromatogr A; 2022 Aug; 1677():463289. PubMed ID: 35820229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral Covalent-Organic Framework MDI-β-CD-Modified COF@SiO
    Ran X; Guo P; Liu C; Zhu Y; Liu C; Wang B; Zhang J; Xie S; Yuan L
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioseparation in capillary eletrochromatography by covalent organic framework coating prepared in situ.
    Wang G; Chen Y; Lv W; Pan C; Zhang H; Chen H; Chen X
    J Chromatogr A; 2022 May; 1670():462943. PubMed ID: 35306370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of the chiral recognition potential of single-isomer sulfated beta-cyclodextrin synthesis intermediates in non-aqueous capillary electrophoresis.
    Fejős I; Varga E; Benkovics G; Darcsi A; Malanga M; Fenyvesi É; Sohajda T; Szente L; Béni S
    J Chromatogr A; 2016 Oct; 1467():454-462. PubMed ID: 27448720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile preparation of ethanediamine-β-cyclodextrin modified capillary column for electrochromatographic enantioseparation of Dansyl amino acids.
    Li Z; Hu C; Liu Y; Li Q; Fu Y; Chen Z
    J Chromatogr A; 2021 Apr; 1643():462082. PubMed ID: 33780884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral Carboxyl-Functionalized Covalent Organic Framework for Enantioselective Adsorption of Amino Acids.
    Zhuo S; Wang X; Li L; Yang S; Ji Y
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):31059-31065. PubMed ID: 34169712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of chiral gas chromatographic separation of alkyl and cycloalkyl 2-bromopropionates using cyclodextrin derivatives as stationary phases.
    Shi X; Zhou Y; Liu F; Mao J; Zhang Y; Shan T
    J Chromatogr A; 2019 Jul; 1596():161-174. PubMed ID: 30851961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and computational study on the enantioseparation of four chiral fluoroquinolones by capillary electrophoresis with sulfated-β-cyclodextrin as chiral selector.
    Ma Q; Cong W; Liu Y; Geng Z; Lin Y; Wang Z
    Chirality; 2021 Sep; 33(9):549-557. PubMed ID: 34275169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.