These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35609340)

  • 1. Differentiation and Quantitation of Coeluting Isomeric Amadori and Heyns Peptides Using Sugar-Specific Fragment Ion Ratios.
    Schmutzler S; Wölk M; Hoffmann R
    Anal Chem; 2022 Jun; 94(22):7909-7917. PubMed ID: 35609340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatographic separation of glycated peptide isomers derived from glucose and fructose.
    Schmutzler S; Hoffmann R
    Anal Bioanal Chem; 2022 Sep; 414(23):6801-6812. PubMed ID: 35922676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-phase synthesis of D-fructose-derived Heyns peptides utilizing N
    Schmutzler S; Knappe D; Marx A; Hoffmann R
    Amino Acids; 2021 Jun; 53(6):881-891. PubMed ID: 33934222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnostic MS/MS fragmentation patterns for the discrimination between Schiff bases and their Amadori or Heyns rearrangement products.
    Xing H; Mossine VV; Yaylayan V
    Carbohydr Res; 2020 May; 491():107985. PubMed ID: 32213351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Comparison of the Contents of Sugar, Amadori, and Heyns Compounds in Fresh and Black Garlic.
    Yuan H; Sun L; Chen M; Wang J
    J Food Sci; 2016 Jul; 81(7):C1662-8. PubMed ID: 27300762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fragmentation behavior of glycated peptides derived from D-glucose, D-fructose and D-ribose in tandem mass spectrometry.
    Frolov A; Hoffmann P; Hoffmann R
    J Mass Spectrom; 2006 Nov; 41(11):1459-69. PubMed ID: 17063450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycation of a lysine-containing tetrapeptide by D-glucose and D-fructose--influence of different reaction conditions on the formation of Amadori/Heyns products.
    Jakas A; Katić A; Bionda N; Horvat S
    Carbohydr Res; 2008 Sep; 343(14):2475-80. PubMed ID: 18656854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amadori and Heyns rearrangement products of bioactive peptides as potential new ligands of galectin-3.
    Jakas A; Ayyalasomayajula R; Cudic M
    Carbohydr Res; 2024 Aug; 542():109195. PubMed ID: 38908217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivities of D-glucose and D-fructose during glycation of bovine serum albumin.
    Yeboah FK; Alli I; Yaylayan VA
    J Agric Food Chem; 1999 Aug; 47(8):3164-72. PubMed ID: 10552625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of liquid chromatography-tandem mass spectrometry for the characterization of galactosylated and tagatosylated beta-lactoglobulin peptides derived from in vitro gastrointestinal digestion.
    Corzo-Martínez M; Lebrón-Aguilar R; Villamiel M; Quintanilla-López JE; Moreno FJ
    J Chromatogr A; 2009 Oct; 1216(43):7205-12. PubMed ID: 19747681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro kinetic studies of formation of antigenic advanced glycation end products (AGEs). Novel inhibition of post-Amadori glycation pathways.
    Booth AA; Khalifah RG; Todd P; Hudson BG
    J Biol Chem; 1997 Feb; 272(9):5430-7. PubMed ID: 9038143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysine-Derived Protein-Bound Heyns Compounds in Bakery Products.
    Treibmann S; Hellwig A; Hellwig M; Henle T
    J Agric Food Chem; 2017 Dec; 65(48):10562-10570. PubMed ID: 29111707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of peptide-bound Heyns compounds.
    Krause R; Schlegel K; Schwarzer E; Henle T
    J Agric Food Chem; 2008 Apr; 56(7):2522-7. PubMed ID: 18318498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Diagnostic Fragment Ion Library for Glycated Peptides of Human Serum Albumin: Targeted Quantification in Prediabetic, Diabetic, and Microalbuminuria Plasma by Parallel Reaction Monitoring, SWATH, and MSE.
    Korwar AM; Vannuruswamy G; Jagadeeshaprasad MG; Jayaramaiah RH; Bhat S; Regin BS; Ramaswamy S; Giri AP; Mohan V; Balasubramanyam M; Kulkarni MJ
    Mol Cell Proteomics; 2015 Aug; 14(8):2150-9. PubMed ID: 26023067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Products of Early and Advanced Glycation in the Soy Milk Proteome.
    Milkovska-Stamenova S; Krieg L; Hoffmann R
    Mol Nutr Food Res; 2019 Jan; 63(2):e1800725. PubMed ID: 30430721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycation isotopic labeling with 13C-reducing sugars for quantitative analysis of glycated proteins in human plasma.
    Priego-Capote F; Scherl A; Müller M; Waridel P; Lisacek F; Sanchez JC
    Mol Cell Proteomics; 2010 Mar; 9(3):579-92. PubMed ID: 19955080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of fragmentation behavior of amadori rearrangement products in lysine-containing peptide model by tandem mass spectrometry.
    Ruan ED; Wang H; Ruan Y; Juárez M
    Eur J Mass Spectrom (Chichester); 2013; 19(4):295-303. PubMed ID: 24575628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycation of Plant Proteins: Regulatory Roles and Interplay with Sugar Signalling?
    Shumilina J; Kusnetsova A; Tsarev A; Janse van Rensburg HC; Medvedev S; Demidchik V; Van den Ende W; Frolov A
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31086058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation, purification, and characterization of an Amadori product binding protein from a Pseudomonas sp. soil strain.
    Gerhardinger C; Taneda S; Marion MS; Monnier VM
    J Biol Chem; 1994 Nov; 269(44):27297-302. PubMed ID: 7961640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helical peptide models for protein glycation: proximity effects in catalysis of the Amadori rearrangement.
    Venkatraman J; Aggarwal K; Balaram P
    Chem Biol; 2001 Jul; 8(7):611-25. PubMed ID: 11451663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.