BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35609424)

  • 1. Understanding the differences in wear testing method standards for total knee replacement.
    Abdelgaied A; Fisher J; Jennings LM
    J Mech Behav Biomed Mater; 2022 Aug; 132():105258. PubMed ID: 35609424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of surgical alignment and soft tissue conditions on the kinematics and wear of a fixed bearing total knee replacement.
    Johnston H; Abdelgaied A; Pandit H; Fisher J; Jennings LM
    J Mech Behav Biomed Mater; 2019 Dec; 100():103386. PubMed ID: 31408775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic evaluation of cruciate-retaining total knee replacement patients during level walking: a comparison with the displacement-controlled ISO standard.
    Ngai V; Wimmer MA
    J Biomech; 2009 Oct; 42(14):2363-8. PubMed ID: 19651410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of in vitro wear of machined and molded UHMWPE tibial inserts on TKR kinematics.
    Benson LC; DesJardins JD; LaBerge M
    J Biomed Mater Res; 2001; 58(5):496-504. PubMed ID: 11505423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representing the effect of variation in soft tissue constraints in experimental simulation of total knee replacements.
    Johnston H; Abdelgaied A; Pandit H; Fisher J; Jennings LM
    J Mech Behav Biomed Mater; 2018 Nov; 87():87-94. PubMed ID: 30053734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of variations in input directions according to ISO 14243 on wearing of knee prostheses.
    Wang XH; Zhang W; Song DY; Li H; Dong X; Zhang M; Zhao F; Jin ZM; Cheng CK
    PLoS One; 2018; 13(10):e0206496. PubMed ID: 30372460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive combined experimental and computational framework for pre-clinical wear simulation of total knee replacements.
    Abdelgaied A; Fisher J; Jennings LM
    J Mech Behav Biomed Mater; 2018 Feb; 78():282-291. PubMed ID: 29195220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-vivo kinematics of knee prostheses patients during level walking compared with the ISO force-controlled simulator standard.
    Ngai V; Schwenke T; Wimmer MA
    Proc Inst Mech Eng H; 2009 Oct; 223(7):889-96. PubMed ID: 19908427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does Kinematic Alignment Increase Polyethylene Wear Compared With Mechanically Aligned Components? A Wear Simulation Study.
    Schroeder S; Schonhoff M; Uhler M; Braun S; Jaeger S; Renkawitz T; Kretzer JP
    Clin Orthop Relat Res; 2022 Sep; 480(9):1790-1800. PubMed ID: 35583549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of total knee replacement wear to variability in motion and load input: A parametric finite element analysis study.
    Mell SP; Wimmer MA; Lundberg HJ
    J Orthop Res; 2020 Jul; 38(7):1538-1549. PubMed ID: 32458460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The choice of the femoral center of rotation affects material loss in total knee replacement wear testing - A parametric finite element study of ISO 14243-3.
    Mell SP; Wimmer MA; Lundberg HJ
    J Biomech; 2019 May; 88():104-112. PubMed ID: 30940359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The wear and kinematics of two medially stabilised total knee replacement systems.
    Cowie RM; Cullum CJ; Collins SN; Jennings LM
    Knee; 2024 Mar; 47():160-170. PubMed ID: 38394995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of simulator input conditions on the wear of total knee replacements: An experimental and computational study.
    Brockett CL; Abdelgaied A; Haythornthwaite T; Hardaker C; Fisher J; Jennings LM
    Proc Inst Mech Eng H; 2016 May; 230(5):429-39. PubMed ID: 27160561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of ISO 14243-1 to ASTM F3141 in terms of wearing of knee prostheses.
    Wang XH; Li H; Dong X; Zhao F; Cheng CK
    Clin Biomech (Bristol, Avon); 2019 Mar; 63():34-40. PubMed ID: 30802769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotribology of a mobile bearing posterior stabilised knee design--effect of motion restraint on wear, tibio-femoral kinematics and particles.
    Grupp TM; Schroeder C; Kyun Kim T; Miehlke RK; Fritz B; Jansson V; Utzschneider S
    J Biomech; 2014 Jul; 47(10):2415-23. PubMed ID: 24837220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of insert conformity and material on total knee replacement wear.
    Abdelgaied A; Brockett CL; Liu F; Jennings LM; Jin Z; Fisher J
    Proc Inst Mech Eng H; 2014 Jan; 228(1):98-106. PubMed ID: 24297773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of ISO standard and TKR patient axial force profiles during the stance phase of gait.
    Lundberg HJ; Ngai V; Wimmer MA
    Proc Inst Mech Eng H; 2012 Mar; 226(3):227-34. PubMed ID: 22558837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Total knee replacement wear during simulated gait with mechanical and anatomic alignments.
    Maag C; Cracaoanu I; Langhorn J; Heldreth M
    Proc Inst Mech Eng H; 2021 May; 235(5):515-522. PubMed ID: 33522419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tibiofemoral conformity variation offers changed kinematics and wear performance of customized posterior-stabilized total knee arthroplasty.
    Koh YG; Son J; Kwon OR; Kwon SK; Kang KT
    Knee Surg Sports Traumatol Arthrosc; 2019 Apr; 27(4):1213-1223. PubMed ID: 29974167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insert conformity variation affects kinematics and wear performance of total knee replacements.
    Zhang Q; Chen Z; Zhang J; Hu J; Peng Y; Fan X; Jin Z
    Clin Biomech (Bristol, Avon); 2019 May; 65():19-25. PubMed ID: 30953916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.