BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35609490)

  • 1. High-rate microbial electrosynthesis using a zero-gap flow cell and vapor-fed anode design.
    Baek G; Rossi R; Saikaly PE; Logan BE
    Water Res; 2022 Jul; 219():118597. PubMed ID: 35609490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using a non-precious metal catalyst for long-term enhancement of methane production in a zero-gap microbial electrosynthesis cell.
    Bian B; Yu N; Akbari A; Shi L; Zhou X; Xie C; Saikaly PE; Logan BE
    Water Res; 2024 Aug; 259():121815. PubMed ID: 38820732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide.
    Flexer V; Jourdin L
    Acc Chem Res; 2020 Feb; 53(2):311-321. PubMed ID: 31990521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes.
    Saheb-Alam S; Singh A; Hermansson M; Persson F; Schnürer A; Wilén BM; Modin O
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing methane content in biogas and simultaneous value added product recovery using microbial electrosynthesis.
    Das S; Chatterjee P; Ghangrekar MM
    Water Sci Technol; 2018 Mar; 77(5-6):1293-1302. PubMed ID: 29528317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of gas and carbon transport in a methanogenic bioelectrochemical system (BES).
    Dykstra CM; Pavlostathis SG
    Biotechnol Bioeng; 2017 May; 114(5):961-969. PubMed ID: 27922181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced bio-electrochemical performance of microbially catalysed anode and cathode in a microbial electrosynthesis system.
    Tahir K; Ali AS; Ghani AA; Hussain M; Kim B; Lim Y; Lee DS
    Chemosphere; 2023 Mar; 317():137770. PubMed ID: 36621685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zero-Valent Iron Enhances Biocathodic Carbon Dioxide Reduction to Methane.
    Dykstra CM; Pavlostathis SG
    Environ Sci Technol; 2017 Nov; 51(21):12956-12964. PubMed ID: 28994592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological methane production coupled with sulfur oxidation in a microbial electrosynthesis system without organic substrates.
    Dinh HTT; Kambara H; Matsushita S; Aoi Y; Kindaichi T; Ozaki N; Ohashi A
    J Environ Sci (China); 2022 Jun; 116():68-78. PubMed ID: 35219426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of biocathode materials for microbial electrosynthesis of methane and acetate.
    Gomez Vidales A; Omanovic S; Li H; Hrapovic S; Tartakovsky B
    Bioelectrochemistry; 2022 Dec; 148():108246. PubMed ID: 36087521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Carbon Dioxide with Anaerobic Digester Biogas as a Methanogenic Biocathode Feedstock.
    Dykstra CM; Cheng C; Pavlostathis SG
    Environ Sci Technol; 2020 Jul; 54(14):8949-8957. PubMed ID: 32544322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competition between Methanogens and Acetogens in Biocathodes: A Comparison between Potentiostatic and Galvanostatic Control.
    Molenaar SD; Saha P; Mol AR; Sleutels TH; Ter Heijne A; Buisman CJ
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28106846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide.
    Bajracharya S; Vanbroekhoven K; Buisman CJ; Pant D; Strik DP
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22292-22308. PubMed ID: 27436381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New microbial electrosynthesis system for methane production from carbon dioxide coupled with oxidation of sulfide to sulfate.
    Kambara H; Dinh HTT; Matsushita S; Aoi Y; Kindaichi T; Ozaki N; Ohashi A
    J Environ Sci (China); 2023 Mar; 125():786-797. PubMed ID: 36375960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial electrosynthesis of methane and acetate-comparison of pure and mixed cultures.
    Hengsbach JN; Sabel-Becker B; Ulber R; Holtmann D
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4427-4443. PubMed ID: 35763070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Bismuth and Tin on Methane and Acetate Production in a Microbial Electrosynthesis Cell Fed with Carbon Dioxide.
    Gharbi R; Omanovic S; Hrapovic S; Nwanebu E; Tartakovsky B
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction.
    Mohanakrishna G; Seelam JS; Vanbroekhoven K; Pant D
    Faraday Discuss; 2015; 183():445-62. PubMed ID: 26399888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct biological conversion of electrical current into methane by electromethanogenesis.
    Cheng S; Xing D; Call DF; Logan BE
    Environ Sci Technol; 2009 May; 43(10):3953-8. PubMed ID: 19544913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependence of bioelectrochemical CO
    Yang HY; Bao BL; Liu J; Qin Y; Wang YR; Su KZ; Han JC; Mu Y
    Bioelectrochemistry; 2018 Feb; 119():180-188. PubMed ID: 29054074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vapor-Fed Cathode Microbial Electrolysis Cells with Closely Spaced Electrodes Enables Greatly Improved Performance.
    Rossi R; Baek G; Logan BE
    Environ Sci Technol; 2022 Jan; 56(2):1211-1220. PubMed ID: 34971515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.