These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35609492)

  • 1. Individual muscle force-energy rate is altered during crouch gait: A neuro-musculoskeletal evaluation.
    Ravera EP; Crespo MJ; Rozumalski A
    J Biomech; 2022 Jun; 139():111141. PubMed ID: 35609492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How much muscle strength is required to walk in a crouch gait?
    Steele KM; van der Krogt MM; Schwartz MH; Delp SL
    J Biomech; 2012 Oct; 45(15):2564-9. PubMed ID: 22959837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressive tibiofemoral force during crouch gait.
    Steele KM; Demers MS; Schwartz MH; Delp SL
    Gait Posture; 2012 Apr; 35(4):556-60. PubMed ID: 22206783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle contributions to vertical and fore-aft accelerations are altered in subjects with crouch gait.
    Steele KM; Seth A; Hicks JL; Schwartz MH; Delp SL
    Gait Posture; 2013 May; 38(1):86-91. PubMed ID: 23200083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle contributions to support and progression during single-limb stance in crouch gait.
    Steele KM; Seth A; Hicks JL; Schwartz MS; Delp SL
    J Biomech; 2010 Aug; 43(11):2099-105. PubMed ID: 20493489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscular contributions to hip and knee extension during the single limb stance phase of normal gait: a framework for investigating the causes of crouch gait.
    Arnold AS; Anderson FC; Pandy MG; Delp SL
    J Biomech; 2005 Nov; 38(11):2181-9. PubMed ID: 16154404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crouched postures reduce the capacity of muscles to extend the hip and knee during the single-limb stance phase of gait.
    Hicks JL; Schwartz MH; Arnold AS; Delp SL
    J Biomech; 2008; 41(5):960-7. PubMed ID: 18291404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulated impacts of ankle foot orthoses on muscle demand and recruitment in typically-developing children and children with cerebral palsy and crouch gait.
    Rosenberg M; Steele KM
    PLoS One; 2017; 12(7):e0180219. PubMed ID: 28704464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crouch gait changes after planovalgus foot deformity correction in ambulatory children with cerebral palsy.
    Kadhim M; Miller F
    Gait Posture; 2014 Feb; 39(2):793-8. PubMed ID: 24316233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crouch severity is a poor predictor of elevated oxygen consumption in cerebral palsy.
    Steele KM; Shuman BR; Schwartz MH
    J Biomech; 2017 Jul; 60():170-174. PubMed ID: 28734543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ankle and knee coupling in patients with spastic diplegia: effects of gastrocnemius-soleus lengthening.
    Baddar A; Granata K; Damiano DL; Carmines DV; Blanco JS; Abel MF
    J Bone Joint Surg Am; 2002 May; 84(5):736-44. PubMed ID: 12004014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does crouch alter the effects of neuromuscular impairments on gait? A simulation study.
    Kuska EC; Steele KM
    J Biomech; 2024 Mar; 165():112015. PubMed ID: 38394953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating the effect of muscle weakness and contracture on neuromuscular control of normal gait in children.
    Fox AS; Carty CP; Modenese L; Barber LA; Lichtwark GA
    Gait Posture; 2018 Mar; 61():169-175. PubMed ID: 29353741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of a short walking exercise on gait kinematics in children with cerebral palsy who walk in a crouch gait.
    Parent A; Raison M; Pouliot-Laforte A; Marois P; Maltais DB; Ballaz L
    Clin Biomech (Bristol, Avon); 2016 May; 34():18-21. PubMed ID: 27038653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of patellar position on the knee extensor mechanism in normal and crouched walking.
    Lenhart RL; Brandon SC; Smith CR; Novacheck TF; Schwartz MH; Thelen DG
    J Biomech; 2017 Jan; 51():1-7. PubMed ID: 27939752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of floor reaction ankle-foot orthosis on crouch gait in patients with cerebral palsy: What can be expected?
    Böhm H; Matthias H; Braatz F; Döderlein L
    Prosthet Orthot Int; 2018 Jun; 42(3):245-253. PubMed ID: 28693377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of surgical and non-surgical management of crouch gait in cerebral palsy: A systematic review.
    Galey SA; Lerner ZF; Bulea TC; Zimbler S; Damiano DL
    Gait Posture; 2017 May; 54():93-105. PubMed ID: 28279852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward a hybrid exoskeleton for crouch gait in children with cerebral palsy: neuromuscular electrical stimulation for improved knee extension.
    Shideler BL; Bulea TC; Chen J; Stanley CJ; Gravunder AJ; Damiano DL
    J Neuroeng Rehabil; 2020 Sep; 17(1):121. PubMed ID: 32883297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics associated with improved knee extension after strength training for individuals with cerebral palsy and crouch gait.
    Steele KM; Damiano DL; Eek MN; Unger M; Delp SL
    J Pediatr Rehabil Med; 2012; 5(2):99-106. PubMed ID: 22699100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.