BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 35609601)

  • 1. Protein language-model embeddings for fast, accurate, and alignment-free protein structure prediction.
    Weissenow K; Heinzinger M; Rost B
    Structure; 2022 Aug; 30(8):1169-1177.e4. PubMed ID: 35609601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embeddings from protein language models predict conservation and variant effects.
    Marquet C; Heinzinger M; Olenyi T; Dallago C; Erckert K; Bernhofer M; Nechaev D; Rost B
    Hum Genet; 2022 Oct; 141(10):1629-1647. PubMed ID: 34967936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TMbed: transmembrane proteins predicted through language model embeddings.
    Bernhofer M; Rost B
    BMC Bioinformatics; 2022 Aug; 23(1):326. PubMed ID: 35941534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SETH predicts nuances of residue disorder from protein embeddings.
    Ilzhöfer D; Heinzinger M; Rost B
    Front Bioinform; 2022; 2():1019597. PubMed ID: 36304335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning.
    Elnaggar A; Heinzinger M; Dallago C; Rehawi G; Wang Y; Jones L; Gibbs T; Feher T; Angerer C; Steinegger M; Bhowmik D; Rost B
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):7112-7127. PubMed ID: 34232869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved structure-related prediction for insufficient homologous proteins using MSA enhancement and pre-trained language model.
    Meng Q; Guo F; Tang J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37321965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Evolutionary Couplings with Deep Convolutional Neural Networks.
    Liu Y; Palmedo P; Ye Q; Berger B; Peng J
    Cell Syst; 2018 Jan; 6(1):65-74.e3. PubMed ID: 29275173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating unsupervised language model with multi-view multiple sequence alignments for high-accuracy inter-chain contact prediction.
    Liu Z; Zhu YH; Shen LC; Xiao X; Qiu WR; Yu DJ
    Comput Biol Med; 2023 Nov; 166():107529. PubMed ID: 37748220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LambdaPP: Fast and accessible protein-specific phenotype predictions.
    Olenyi T; Marquet C; Heinzinger M; Kröger B; Nikolova T; Bernhofer M; Sändig P; Schütze K; Littmann M; Mirdita M; Steinegger M; Dallago C; Rost B
    Protein Sci; 2023 Jan; 32(1):e4524. PubMed ID: 36454227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-sequence protein structure prediction using a language model and deep learning.
    Chowdhury R; Bouatta N; Biswas S; Floristean C; Kharkar A; Roy K; Rochereau C; Ahdritz G; Zhang J; Church GM; Sorger PK; AlQuraishi M
    Nat Biotechnol; 2022 Nov; 40(11):1617-1623. PubMed ID: 36192636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analysis of protein language model embeddings for fold prediction.
    Villegas-Morcillo A; Gomez AM; Sanchez V
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35443054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing effect of quadruple multiple sequence alignments on deep learning based protein inter-residue distance prediction.
    Jain A; Terashi G; Kagaya Y; Maddhuri Venkata Subramaniya SR; Christoffer C; Kihara D
    Sci Rep; 2021 Apr; 11(1):7574. PubMed ID: 33828153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein embeddings predict binding residues in disordered regions.
    Jahn LR; Marquet C; Heinzinger M; Rost B
    Sci Rep; 2024 Jun; 14(1):13566. PubMed ID: 38866950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in features generation for membrane protein sequences: From multiple sequence alignment to pre-trained language models.
    Ou YY; Ho QT; Chang HT
    Proteomics; 2023 Dec; 23(23-24):e2200494. PubMed ID: 37863817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.
    Fukuda H; Tomii K
    BMC Bioinformatics; 2020 Jan; 21(1):10. PubMed ID: 31918654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. rawMSA: End-to-end Deep Learning using raw Multiple Sequence Alignments.
    Mirabello C; Wallner B
    PLoS One; 2019; 14(8):e0220182. PubMed ID: 31415569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learned Embeddings from Deep Learning to Visualize and Predict Protein Sets.
    Dallago C; Schütze K; Heinzinger M; Olenyi T; Littmann M; Lu AX; Yang KK; Min S; Yoon S; Morton JT; Rost B
    Curr Protoc; 2021 May; 1(5):e113. PubMed ID: 33961736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pairing interacting protein sequences using masked language modeling.
    Lupo U; Sgarbossa D; Bitbol AF
    Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2311887121. PubMed ID: 38913900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.