These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35609607)

  • 21. Visual responses of neurons in the pretectal nucleus lentiformis mesencephali to moving patterns within and beyond receptive fields in pigeons.
    Xiao Q; Cao P; Gu Y; Wang SR
    Brain Behav Evol; 2001 Feb; 57(2):80-6. PubMed ID: 11435668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Directional modulation of visual responses of pretectal neurons by accessory optic neurons in pigeons.
    Gu Y; Wang Y; Wang SR
    Neuroscience; 2001; 104(1):153-9. PubMed ID: 11311539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimulus features eliciting visual responses from neurons in the nucleus lentiformis mesencephali in pigeons.
    Fu YX; Xiao Q; Gao HF; Wang SR
    Vis Neurosci; 1998; 15(6):1079-87. PubMed ID: 9839972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The retinal projection to the nucleus lentiformis mesencephali in zebra finch (Taeniopygia guttata) and Anna's hummingbird (Calypte anna).
    Gutierrez-Ibanez C; Gaede AH; Dannish MR; Altshuler DL; Wylie DR
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Apr; 204(4):369-376. PubMed ID: 29340763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast and slow neurons in the nucleus of the basal optic root in pigeons.
    Crowder NA; W Wylie DR
    Neurosci Lett; 2001 May; 304(3):133-6. PubMed ID: 11343820
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptation to visual motion in directional neurons of the nucleus of the optic tract.
    Ibbotson MR; Clifford CW; Mark RF
    J Neurophysiol; 1998 Mar; 79(3):1481-93. PubMed ID: 9497426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visual responses of neurons in the nucleus of the basal optic root to stationary stimuli in pigeons.
    Gu Y; Wang Y; Wang SR
    J Neurosci Res; 2002 Mar; 67(5):698-704. PubMed ID: 11891782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direction-selective single units in the nucleus lentiformis mesencephali of the pigeon (Columba livia).
    Winterson BJ; Brauth SE
    Exp Brain Res; 1985; 60(2):215-26. PubMed ID: 4054266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective processing of all rotational and translational optic flow directions in the zebrafish pretectum and tectum.
    Wang K; Hinz J; Haikala V; Reiff DF; Arrenberg AB
    BMC Biol; 2019 Mar; 17(1):29. PubMed ID: 30925897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli.
    Duffy CJ; Wurtz RH
    J Neurophysiol; 1991 Jun; 65(6):1346-59. PubMed ID: 1875244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscle activation patterns and motor anatomy of Anna's hummingbirds Calypte anna and zebra finches Taeniopygia guttata.
    Donovan ER; Keeney BK; Kung E; Makan S; Wild JM; Altshuler DL
    Physiol Biochem Zool; 2013; 86(1):27-46. PubMed ID: 23303319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neurophysiological investigation of the pretectal nucleus lentiformis mesencephali in Rana pipiens.
    Fite KV; Kwei-Levy C; Bengston L
    Brain Behav Evol; 1989; 34(3):164-70. PubMed ID: 2590832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subcellular mapping of dendritic activity in optic flow processing neurons.
    Hopp E; Borst A; Haag J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 May; 200(5):359-70. PubMed ID: 24647929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wide-field nondirectional visual units in the pretectum: do they suppress ocular following of saccade-induced visual stimulation.
    Ibbotson MR; Mark RF
    J Neurophysiol; 1994 Sep; 72(3):1448-50. PubMed ID: 7807228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visual-Cerebellar Pathways and Their Roles in the Control of Avian Flight.
    Wylie DR; Gutiérrez-Ibáñez C; Gaede AH; Altshuler DL; Iwaniuk AN
    Front Neurosci; 2018; 12():223. PubMed ID: 29686605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys.
    Felleman DJ; Kaas JH
    J Neurophysiol; 1984 Sep; 52(3):488-513. PubMed ID: 6481441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diverse suppressive influences in area MT and selectivity to complex motion features.
    Cui Y; Liu LD; Khawaja FA; Pack CC; Butts DA
    J Neurosci; 2013 Oct; 33(42):16715-28. PubMed ID: 24133273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex.
    Gizzi MS; Katz E; Schumer RA; Movshon JA
    J Neurophysiol; 1990 Jun; 63(6):1529-43. PubMed ID: 2358891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel, continuous visual motion induces c-fos expression in the avian optokinetic nuclei and optic tectum.
    Rojas X; Marín G; Wallman J
    Neuroscience; 2009 May; 160(2):540-54. PubMed ID: 19217933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distributed and Dynamic Neural Encoding of Multiple Motion Directions of Transparently Moving Stimuli in Cortical Area MT.
    Xiao J; Huang X
    J Neurosci; 2015 Dec; 35(49):16180-98. PubMed ID: 26658869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.