These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35609607)

  • 41. Radial motion bias in macaque frontal eye field.
    Xiao Q; Barborica A; Ferrera VP
    Vis Neurosci; 2006; 23(1):49-60. PubMed ID: 16597350
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Iterative cooperation between parallel pathways for object and background motion.
    Mahani AS; Wessel R
    Biol Cybern; 2006 Oct; 95(4):393-400. PubMed ID: 16909272
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Response properties of visual interneurons to motion stimuli in the praying mantis, Tenodera aridifolia.
    Yamawaki Y; Toh Y
    Zoolog Sci; 2003 Jul; 20(7):819-32. PubMed ID: 12867710
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Motion parallax processing in pigeon (Columba livia) pretectal neurons.
    Xiao Q; Frost BJ
    Eur J Neurosci; 2013 Apr; 37(7):1103-11. PubMed ID: 23294181
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Integration of Small- and Wide-Field Visual Features in Target-Selective Descending Neurons of both Predatory and Nonpredatory Dipterans.
    Nicholas S; Supple J; Leibbrandt R; Gonzalez-Bellido PT; Nordström K
    J Neurosci; 2018 Dec; 38(50):10725-10733. PubMed ID: 30373766
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fourier Motion Processing in the Optic Tectum and Pretectum of the Zebrafish Larva.
    Duchemin A; Privat M; Sumbre G
    Front Neural Circuits; 2021; 15():814128. PubMed ID: 35069128
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Compound Stimuli Reveal the Structure of Visual Motion Selectivity in Macaque MT Neurons.
    Zaharia AD; Goris RLT; Movshon JA; Simoncelli EP
    eNeuro; 2019; 6(6):. PubMed ID: 31604815
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Parallel Channels for Motion Feature Extraction in the Pretectum and Tectum of Larval Zebrafish.
    Wang K; Hinz J; Zhang Y; Thiele TR; Arrenberg AB
    Cell Rep; 2020 Jan; 30(2):442-453.e6. PubMed ID: 31940488
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Visual-response properties of neurons in turtle basal optic nucleus in vitro.
    Rosenberg AF; Ariel M
    J Neurophysiol; 1990 May; 63(5):1033-45. PubMed ID: 2358861
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Circuit Organization Underlying Optic Flow Processing in Zebrafish.
    Matsuda K; Kubo F
    Front Neural Circuits; 2021; 15():709048. PubMed ID: 34366797
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatial and temporal frequency selectivity of neurons in the middle temporal visual area of new world monkeys (Callithrix jacchus).
    Lui LL; Bourne JA; Rosa MG
    Eur J Neurosci; 2007 Mar; 25(6):1780-92. PubMed ID: 17432965
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Motion sensitivity in the nucleus of the basal optic root of the pigeon.
    Wolf-Oberhollenzer F; Kirschfeld K
    J Neurophysiol; 1994 Apr; 71(4):1559-73. PubMed ID: 8035235
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Robustness of the tuning of fly visual interneurons to rotatory optic flow.
    Karmeier K; Krapp HG; Egelhaaf M
    J Neurophysiol; 2003 Sep; 90(3):1626-34. PubMed ID: 12736239
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cortical neurons combine visual cues about self-movement.
    Sato N; Kishore S; Page WK; Duffy CJ
    Exp Brain Res; 2010 Oct; 206(3):283-97. PubMed ID: 20852992
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Motion-form interactions beyond the motion integration level: evidence for interactions between orientation and optic flow signals.
    Pavan A; Marotti RB; Mather G
    J Vis; 2013 May; 13(6):16. PubMed ID: 23729767
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The optokinetic response in wild type and white zebra finches.
    Eckmeier D; Bischof HJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Oct; 194(10):871-8. PubMed ID: 18704442
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pretectal neurons optimized for the detection of saccade-like movements of the visual image.
    Price NS; Ibbotson MR
    J Neurophysiol; 2001 Apr; 85(4):1512-21. PubMed ID: 11287475
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish.
    Kubo F; Hablitzel B; Dal Maschio M; Driever W; Baier H; Arrenberg AB
    Neuron; 2014 Mar; 81(6):1344-1359. PubMed ID: 24656253
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The pretectal nucleus of the optic tract modulates the direction selectivity of accessory optic neurons in rats.
    Natal CL; Britto LR
    Brain Res; 1987 Sep; 419(1-2):320-3. PubMed ID: 3676736
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Motion integration by neurons in macaque MT is local, not global.
    Majaj NJ; Carandini M; Movshon JA
    J Neurosci; 2007 Jan; 27(2):366-70. PubMed ID: 17215397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.