These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 3561030)

  • 41. Cardiac valve replacement: a bioengineering approach.
    Korossis SA; Fisher J; Ingham E
    Biomed Mater Eng; 2000; 10(2):83-124. PubMed ID: 11086842
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinematics of synthetic flexible leaflet heart valves during accelerated testing.
    D'Souza SS; Butterfield M; Fisher J
    J Heart Valve Dis; 2003 Jan; 12(1):110-9; discussion 119-20. PubMed ID: 12578345
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro endothelialization of bioprosthetic heart valves.
    Fischlein T; Fasol R
    J Heart Valve Dis; 1996 Jan; 5(1):58-65. PubMed ID: 8834727
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves.
    Korossis SA; Booth C; Wilcox HE; Watterson KG; Kearney JN; Fisher J; Ingham E
    J Heart Valve Dis; 2002 Jul; 11(4):463-71. PubMed ID: 12150291
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of the compressive buckling of porcine aortic valve cusps and bovine pericardium.
    Vesely I; Mako WJ
    J Heart Valve Dis; 1998 Jan; 7(1):34-9. PubMed ID: 9502137
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Frame-mounted porcine valve bioprostheses: preparation during aortic-root dilation. Biomechanics and design considerations.
    Butterfield M; Fisher J; Lockie KJ; Davies GA; Watterson K
    J Thorac Cardiovasc Surg; 1993 Dec; 106(6):1181-8. PubMed ID: 8246557
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The in vitro hydrodynamic characteristics of the porcine pulmonary valve and root with regard to the ross procedure.
    Nagy ZL; Fisher J; Walker PG; Watterson KG
    J Thorac Cardiovasc Surg; 2000 Aug; 120(2):284-9. PubMed ID: 10917944
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flow-induced platelet activation in a St. Jude mechanical heart valve, a trileaflet polymeric heart valve, and a St. Jude tissue valve.
    Yin W; Gallocher S; Pinchuk L; Schoephoerster RT; Jesty J; Bluestein D
    Artif Organs; 2005 Oct; 29(10):826-31. PubMed ID: 16185345
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Degeneration of bioprosthetic heart valve cusp and wall tissues is initiated during tissue preparation: an ultrastructural study.
    Simionescu DT; Lovekamp JJ; Vyavahare NR
    J Heart Valve Dis; 2003 Mar; 12(2):226-34. PubMed ID: 12701796
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fluid-Structure Interaction Models of Bioprosthetic Heart Valve Dynamics in an Experimental Pulse Duplicator.
    Lee JH; Rygg AD; Kolahdouz EM; Rossi S; Retta SM; Duraiswamy N; Scotten LN; Craven BA; Griffith BE
    Ann Biomed Eng; 2020 May; 48(5):1475-1490. PubMed ID: 32034607
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses.
    Ge L; Dasi LP; Sotiropoulos F; Yoganathan AP
    Ann Biomed Eng; 2008 Feb; 36(2):276-97. PubMed ID: 18049902
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural analysis of a stented pericardial heart valve with leaflets mounted externally.
    Avanzini A; Battini D
    Proc Inst Mech Eng H; 2014 Oct; 228(10):985-95. PubMed ID: 25252695
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of Leaflet Design on Transvalvular Gradients of Bioprosthetic Heart Valves.
    Dabiri Y; Ronsky J; Ali I; Basha A; Bhanji A; Narine K
    Cardiovasc Eng Technol; 2016 Dec; 7(4):363-373. PubMed ID: 27573761
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fluid mechanics of heart valves.
    Yoganathan AP; He Z; Casey Jones S
    Annu Rev Biomed Eng; 2004; 6():331-62. PubMed ID: 15255773
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A model of the geometrical changes in aortic valve leaflets in response to leaflet extension and variable boundary conditions.
    Fisher J; Butterfield M; Lockie KJ; Davies GA
    Proc Inst Mech Eng H; 1992; 206(1):7-14. PubMed ID: 1418197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of a bioprosthetic bicuspid venous valve hemodynamics: implications for mechanism of valve dynamics.
    Tien WH; Chen HY; Berwick ZC; Krieger J; Chambers S; Dabiri D; Kassab GS
    Eur J Vasc Endovasc Surg; 2014 Oct; 48(4):459-64. PubMed ID: 25150441
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves.
    Loerakker S; Argento G; Oomens CW; Baaijens FP
    J Biomech; 2013 Jul; 46(11):1792-800. PubMed ID: 23786664
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Real time, non-invasive assessment of leaflet deformation in heart valve tissue engineering.
    Kortsmit J; Driessen NJ; Rutten MC; Baaijens FP
    Ann Biomed Eng; 2009 Mar; 37(3):532-41. PubMed ID: 19093211
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model.
    Kim H; Lu J; Sacks MS; Chandran KB
    Ann Biomed Eng; 2008 Feb; 36(2):262-75. PubMed ID: 18046648
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fluid mechanics of artificial heart valves.
    Dasi LP; Simon HA; Sucosky P; Yoganathan AP
    Clin Exp Pharmacol Physiol; 2009 Feb; 36(2):225-37. PubMed ID: 19220329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.