These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35610432)

  • 1. Detecting Circadian Rhythms in Human Red Blood Cells by Dielectrophoresis.
    Beale AD; Labeed FH; Kitcatt SJ; O'Neill JS
    Methods Mol Biol; 2022; 2482():255-264. PubMed ID: 35610432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhythmic potassium transport regulates the circadian clock in human red blood cells.
    Henslee EA; Crosby P; Kitcatt SJ; Parry JSW; Bernardini A; Abdallat RG; Braun G; Fatoyinbo HO; Harrison EJ; Edgar RS; Hoettges KF; Reddy AB; Jabr RI; von Schantz M; O'Neill JS; Labeed FH
    Nat Commun; 2017 Dec; 8(1):1978. PubMed ID: 29215003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Casein Kinase 1 Underlies Temperature Compensation of Circadian Rhythms in Human Red Blood Cells.
    Beale AD; Kruchek E; Kitcatt SJ; Henslee EA; Parry JSW; Braun G; Jabr R; von Schantz M; O'Neill JS; Labeed FH
    J Biol Rhythms; 2019 Apr; 34(2):144-153. PubMed ID: 30898060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro characterisation of murine pre-adipose nucleated cells reveals electrophysiological cycles associated with biological clocks.
    Martin C; Johnston JD; Henslee EA; van der Veen DR; Labeed FH
    Electrophoresis; 2022 Jun; 43(12):1337-1346. PubMed ID: 35543378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms and physiological function of daily haemoglobin oxidation rhythms in red blood cells.
    Beale AD; Hayter EA; Crosby P; Valekunja UK; Edgar RS; Chesham JE; Maywood ES; Labeed FH; Reddy AB; Wright KP; Lilley KS; Bechtold DA; Hastings MH; O'Neill JS
    EMBO J; 2023 Oct; 42(19):e114164. PubMed ID: 37554073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Cell-Autonomous Clock of VIP Receptor VPAC2 Cells Regulates Period and Coherence of Circadian Behavior.
    Hamnett R; Chesham JE; Maywood ES; Hastings MH
    J Neurosci; 2021 Jan; 41(3):502-512. PubMed ID: 33234609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro circadian rhythms: imaging and electrophysiology.
    Beaulé C; Granados-Fuentes D; Marpegan L; Herzog ED
    Essays Biochem; 2011 Jun; 49(1):103-17. PubMed ID: 21819387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian rhythmicity in murine blood: Electrical effects of malaria infection and anemia.
    Labeed FH; Beale AD; Schneider P; Kitcatt SJ; Kruchek EJ; Reece SE
    Front Bioeng Biotechnol; 2022; 10():994487. PubMed ID: 36440448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermocyclic and photocyclic entrainment of circadian locomotor activity rhythms in sleepy lizards, Tiliqua rugosa.
    Ellis DJ; Firth BT; Belan I
    Chronobiol Int; 2009 Oct; 26(7):1369-88. PubMed ID: 19916837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review: Dielectrophoresis in cell characterization.
    Henslee EA
    Electrophoresis; 2020 Nov; 41(21-22):1915-1930. PubMed ID: 32735707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring circadian rhythms in olfaction using electroantennograms.
    Krishnan P; Dryer SE; Hardin PE
    Methods Enzymol; 2005; 393():495-508. PubMed ID: 15817308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A TTX-sensitive local circuit is involved in the expression of PK2 and BDNF circadian rhythms in the mouse suprachiasmatic nucleus.
    Baba K; Ono D; Honma S; Honma K
    Eur J Neurosci; 2008 Feb; 27(4):909-16. PubMed ID: 18279366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advancing practical usage of microtechnology: a study of the functional consequences of dielectrophoresis on neural stem cells.
    Lu J; Barrios CA; Dickson AR; Nourse JL; Lee AP; Flanagan LA
    Integr Biol (Camb); 2012 Oct; 4(10):1223-36. PubMed ID: 22892587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus.
    Guilding C; Hughes AT; Brown TM; Namvar S; Piggins HD
    Mol Brain; 2009 Aug; 2():28. PubMed ID: 19712475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of electric fields on circadian rhythmicity in men.
    Wever R
    Life Sci Space Res; 1970; 8():177-87. PubMed ID: 11826883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian rhythms of seven heavy metals in plasma, erythrocytes and urine in men: observation in metal workers.
    Yokoyama K; Araki S; Sato H; Aono H
    Ind Health; 2000 Apr; 38(2):205-12. PubMed ID: 10812843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of gustatory physiology and appetitive behavior by the Drosophila circadian clock.
    Chatterjee A; Tanoue S; Houl JH; Hardin PE
    Curr Biol; 2010 Feb; 20(4):300-9. PubMed ID: 20153192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal circadian rhythms in humans.
    Tuunainen A; Kripke DF; Cress AC; Youngstedt SD
    Chronobiol Int; 2001 Nov; 18(6):957-71. PubMed ID: 11777083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phase dynamics model of human circadian rhythms.
    Nakao M; Yamamoto K; Honma K; Hashimoto S; Honma S; Katayama N; Yamamoto M
    J Biol Rhythms; 2002 Oct; 17(5):476-89. PubMed ID: 12375623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.