BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 35610631)

  • 1. Coupled CFD-DEM modeling to predict how EPS affects bacterial biofilm deformation, recovery and detachment under flow conditions.
    Xia Y; Jayathilake PG; Li B; Zuliani P; Deehan D; Longyear J; Stoodley P; Chen J
    Biotechnol Bioeng; 2022 Sep; 119(9):2551-2563. PubMed ID: 35610631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of hydrodynamic conditions on the composition, spatiotemporal distribution of different extracellular polymeric substances and the architecture of biofilms.
    Pan M; Li H; Han X; Ma W; Li X; Guo Q; Yang B; Ding C; Ma Y
    Chemosphere; 2022 Nov; 307(Pt 4):135965. PubMed ID: 35963380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular Polymeric Matrix Production and Relaxation under Fluid Shear and Mechanical Pressure in Staphylococcus aureus Biofilms.
    Hou J; Veeregowda DH; van de Belt-Gritter B; Busscher HJ; van der Mei HC
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multicomponent model of deformation and detachment of a biofilm under fluid flow.
    Tierra G; Pavissich JP; Nerenberg R; Xu Z; Alber MS
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25808342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian approach to modelling the impact of hydrodynamic shear stress on biofilm deformation.
    Oyebamiji OK; Wilkinson DJ; Jayathilake PG; Rushton SP; Bridgens B; Li B; Zuliani P
    PLoS One; 2018; 13(4):e0195484. PubMed ID: 29649240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling bacterial twitching in fluid flows: a CFD-DEM approach.
    Jayathilake PG; Li B; Zuliani P; Curtis T; Chen J
    Sci Rep; 2019 Oct; 9(1):14540. PubMed ID: 31601892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Changes in Biofilm Structures under Dynamic Flow Conditions.
    Wang S; Zhu H; Zheng G; Dong F; Liu C
    Appl Environ Microbiol; 2022 Nov; 88(22):e0107222. PubMed ID: 36300948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational and Experimental Investigation of Biofilm Disruption Dynamics Induced by High-Velocity Gas Jet Impingement.
    Prades L; Fabbri S; Dorado AD; Gamisans X; Stoodley P; Picioreanu C
    mBio; 2020 Jan; 11(1):. PubMed ID: 31911489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CFD-DEM modelling of biofilm streamer oscillations and their cohesive failure in fluid flow.
    Xia Y; Jayathilake PG; Li B; Zuliani P; Chen J
    Biotechnol Bioeng; 2021 Feb; 118(2):918-929. PubMed ID: 33146404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmission of Monospecies and Dual-Species Biofilms from Smooth to Nanopillared Surfaces.
    Gusnaniar ; Hizal F; Choi CH; Sjollema J; Nuryastuti T; Rustema-Abbing M; Rozenbaum RT; van der Mei HC; Busscher HJ; Wessel SW
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of flow velocity on the distribution and composition of extracellular polymeric substances in biofilms and the detachment mechanism of biofilms.
    Wang C; Miao L; Hou J; Wang P; Qian J; Dai S
    Water Sci Technol; 2014; 69(4):825-32. PubMed ID: 24569283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheology of Pseudomonas fluorescens biofilms: From experiments to predictive DPD mesoscopic modeling.
    Martín-Roca J; Bianco V; Alarcón F; Monnappa AK; Natale P; Monroy F; Orgaz B; López-Montero I; Valeriani C
    J Chem Phys; 2023 Feb; 158(7):074902. PubMed ID: 36813707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling biofilm development: The importance of considering the link between EPS distribution, detachment mechanisms and physical properties.
    Pechaud Y; Derlon N; Queinnec I; Bessiere Y; Paul E
    Water Res; 2024 Feb; 250():120985. PubMed ID: 38118257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A distinguishable role of eDNA in the viscoelastic relaxation of biofilms.
    Peterson BW; van der Mei HC; Sjollema J; Busscher HJ; Sharma PK
    mBio; 2013 Oct; 4(5):e00497-13. PubMed ID: 24129256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Description of mechanical response including detachment using a novel particle model of biofilm/flow interaction.
    Alpkvist E; Klapper I
    Water Sci Technol; 2007; 55(8-9):265-73. PubMed ID: 17546995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic platform for characterizing the structure and rheology of biofilm streamers.
    Savorana G; Słomka J; Stocker R; Rusconi R; Secchi E
    Soft Matter; 2022 May; 18(20):3878-3890. PubMed ID: 35535650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction and quantification of bacterial biofilm detachment using Glazier-Graner-Hogeweg method based model simulations.
    Sheraton MV; Melnikov VR; Sloot PMA
    J Theor Biol; 2019 Dec; 482():109994. PubMed ID: 31487498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting biofilm deformation with a viscoelastic phase-field model: Modeling and experimental studies.
    Li M; Matouš K; Nerenberg R
    Biotechnol Bioeng; 2020 Nov; 117(11):3486-3498. PubMed ID: 32658320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional Numerical Simulations of Biofilm Dynamics with Quorum Sensing in a Flow Cell.
    Zhao J; Wang Q
    Bull Math Biol; 2017 Apr; 79(4):884-919. PubMed ID: 28290008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of mechanical properties of biofilms by modelling the deformation measured using optical coherence tomography.
    Picioreanu C; Blauert F; Horn H; Wagner M
    Water Res; 2018 Nov; 145():588-598. PubMed ID: 30199803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.