These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35610928)

  • 1. Activated Polyacrylamides as Versatile Substrates for Postpolymerization Modification.
    Larsen MB; Herzog SE; Quilter HC; Hillmyer MA
    ACS Macro Lett; 2018 Jan; 7(1):122-126. PubMed ID: 35610928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversification of Acrylamide Polymers via Direct Transamidation of Unactivated Tertiary Amides.
    Trachsel L; Konar D; Hillman JD; Davidson CLG; Sumerlin BS
    J Am Chem Soc; 2024 Jan; 146(2):1627-1634. PubMed ID: 38189246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postpolymerization modification using less cytotoxic activated ester polymers for the synthesis of biological active polymers.
    He L; Szameit K; Zhao H; Hahn U; Theato P
    Biomacromolecules; 2014 Aug; 15(8):3197-205. PubMed ID: 25019415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postpolymerization Modification by Nucleophilic Addition to Styrenic Carbodiimides.
    Houck HE; McConnell KA; Klingler CJ; Koenig AL; Himka GK; Larsen MB
    ACS Macro Lett; 2023 Aug; 12(8):1112-1117. PubMed ID: 37485980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Free Transamidation of Secondary Amides by N-C Cleavage.
    Rahman MM; Li G; Szostak M
    J Org Chem; 2019 Sep; 84(18):12091-12100. PubMed ID: 31430149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(allyl alcohol) Homo- and Block Polymers by Postpolymerization Reduction of an Activated Polyacrylamide.
    Larsen MB; Wang SJ; Hillmyer MA
    J Am Chem Soc; 2018 Sep; 140(38):11911-11915. PubMed ID: 30215257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of functional polyacrylamide (co)polymers by organocatalyzed post-polymerization modification of non-activated esters.
    Li G; Zhang Z; Xiao W; Wu T; Xu J
    RSC Adv; 2023 Sep; 13(41):28931-28939. PubMed ID: 37795050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Living Polymerization of 2-Ethylthio-2-oxazoline and Postpolymerization Diversification.
    Wu YM; Swager TM
    J Am Chem Soc; 2019 Aug; 141(32):12498-12501. PubMed ID: 31365245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalized Polymersomes from a Polyisoprene-Activated Polyacrylamide Precursor.
    Werber JR; Peterson C; Van Zee NJ; Hillmyer MA
    Langmuir; 2021 Jan; 37(1):490-498. PubMed ID: 33369411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Electrochemical Modification and Degradation of Polymers.
    Hughes RW; Marquez JD; Young JB; Garrison JB; Zastrow IS; Evans AM; Sumerlin BS
    Angew Chem Int Ed Engl; 2024 May; 63(20):e202403026. PubMed ID: 38416815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision PEGylated polymers obtained by sequence-controlled copolymerization and postpolymerization modification.
    Srichan S; Mutlu H; Badi N; Lutz JF
    Angew Chem Int Ed Engl; 2014 Aug; 53(35):9231-5. PubMed ID: 24990221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled synthesis of amino acid-based pH-responsive chiral polymers and self-assembly of their block copolymers.
    Bauri K; Roy SG; Pant S; De P
    Langmuir; 2013 Feb; 29(8):2764-74. PubMed ID: 23346856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stoichiometric Control over Partial Transesterification of Polyacrylate Homopolymers as Platform for Functional Copolyacrylates.
    Van Guyse JFR; Bernhard Y; Hoogenboom R
    Macromol Rapid Commun; 2020 Oct; 41(19):e2000365. PubMed ID: 32808369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary Structure in Nonpeptidic Supramolecular Block Copolymers.
    Milton M; Deng R; Mann A; Wang C; Tang D; Weck M
    Acc Chem Res; 2021 May; 54(10):2397-2408. PubMed ID: 33914498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic upcycling of polyacrylates through organocatalyzed post-polymerization modification.
    Easterling CP; Kubo T; Orr ZM; Fanucci GE; Sumerlin BS
    Chem Sci; 2017 Nov; 8(11):7705-7709. PubMed ID: 29568433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Branched Polydimethylacrylamide Copolymers as Functional Biomaterials.
    Mann JL; Grosskopf AK; Smith AAA; Appel EA
    Biomacromolecules; 2021 Jan; 22(1):86-94. PubMed ID: 32786733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyacrylamides bearing pendant alpha-sialoside groups strongly inhibit agglutination of erythrocytes by influenza A virus: multivalency and steric stabilization of particulate biological systems.
    Lees WJ; Spaltenstein A; Kingery-Wood JE; Whitesides GM
    J Med Chem; 1994 Sep; 37(20):3419-33. PubMed ID: 7932570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decarboxylation of Poly[N-(acryloyloxy)phthalimide] as a Versatile Tool for Postpolymerization Modification.
    Frech S; Molle E; Hub C; Theato P
    Macromol Rapid Commun; 2022 May; 43(10):e2200068. PubMed ID: 35320602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Side-chain peptide-synthetic polymer conjugates via tandem "ester-amide/thiol-ene" post-polymerization modification of poly(pentafluorophenyl methacrylate) obtained using ATRP.
    Singha NK; Gibson MI; Koiry BP; Danial M; Klok HA
    Biomacromolecules; 2011 Aug; 12(8):2908-13. PubMed ID: 21732702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Polymers Bearing Activated Esters for the Synthesis of Glycopolymers by Postpolymerization Modification.
    Tanaka T
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38675019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.