These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35610954)

  • 1. VPO
    Liao M; Cao Y; Li Z; Xu J; Qi Y; Xie Y; Peng Y; Wang Y; Wang F; Xia Y
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202206635. PubMed ID: 35610954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. K
    Qiao F; Wang J; Yu R; Pi Y; Huang M; Cui L; Liu Z; An Q
    Small Methods; 2024 Jan; 8(1):e2300865. PubMed ID: 37800984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances and Prospects of High-Voltage Spinel Cathodes for Lithium-Based Batteries.
    Yu X; Yu WA; Manthiram A
    Small Methods; 2021 May; 5(5):e2001196. PubMed ID: 34928095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vanadium Hexacyanoferrate Prussian Blue Analogs for Aqueous Proton Storage: Excellent Electrochemical Properties and Mechanism Insights.
    Yang J; Hou W; Ye L; Hou G; Yan C; Zhang Y
    Small; 2024 Jan; 20(2):e2305386. PubMed ID: 37668264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogel-derived VPO
    Guo D; Yang M; Li Y; Xue Y; Liu G; Wu N; Kim JK; Liu X
    Nanoscale; 2020 Feb; 12(6):3812-3819. PubMed ID: 31994591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-Vanadium Incorporated Ferrocyanides as Potential Cathode Materials for Application in Sodium-Ion Batteries.
    Nguyen TP; Kim IT
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vanadium hexacyanoferrate as high-capacity cathode for fast proton storage.
    Peng X; Guo H; Ren W; Su Z; Zhao C
    Chem Commun (Camb); 2020 Oct; 56(79):11803-11806. PubMed ID: 33021255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational Construction of Multivoids-Assembled Hybrid Nanospheres Based on VPO
    Zhao D; Meng T; Qin J; Wang W; Yin Z; Cao M
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1437-1445. PubMed ID: 27996243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A High Potential Polyanion Cathode Material for Rechargeable Mg-Ion Batteries.
    Li C; Lin L; Wu W; Sun X
    Small Methods; 2022 Aug; 6(8):e2200363. PubMed ID: 35689302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. α-VPO
    Fedotov SS; Samarin AS; Nikitina VA; Stevenson KJ; Abakumov AM; Antipov EV
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12431-12440. PubMed ID: 30827092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vanadium fluorophosphates: advanced cathode materials for next-generation secondary batteries.
    Xu S; Yang Y; Tang F; Yao Y; Lv X; Liu L; Xu C; Feng Y; Rui X; Yu Y
    Mater Horiz; 2023 Jun; 10(6):1901-1923. PubMed ID: 36942608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Capacity Aqueous Storage in Vanadate Cathodes Promoted by the Zn-Ion and Proton Intercalation and Conversion-Intercalation of Vanadyl Ions.
    Kim S; Shan X; Abeykoon M; Kwon G; Olds D; Teng X
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25993-26000. PubMed ID: 34019372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Potential Cathodes with Nitrogen Active Centres for Quasi-Solid Proton-Ion Batteries.
    Shen D; Rao AM; Zhou J; Lu B
    Angew Chem Int Ed Engl; 2022 May; 61(22):e202201972. PubMed ID: 35294100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton-Dominated Reversible Aqueous Zinc Batteries with an Ultraflat Long Discharge Plateau.
    Sun Y; Lian Z; Ren Z; Yao Z; Yin Y; Huai P; Zhu F; Huang Y; Wen W; Li X; Tai R; Zhu D
    ACS Nano; 2021 Sep; 15(9):14766-14775. PubMed ID: 34432437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A High Capacity, Good Safety and Low Cost Na
    Guan W; Pan B; Zhou P; Mi J; Zhang D; Xu J; Jiang Y
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22369-22377. PubMed ID: 28574241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ruthenium-oxide-coated sodium vanadium fluorophosphate nanowires as high-power cathode materials for sodium-ion batteries.
    Peng M; Li B; Yan H; Zhang D; Wang X; Xia D; Guo G
    Angew Chem Int Ed Engl; 2015 May; 54(22):6452-6. PubMed ID: 25864686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-voltage liquid electrolytes for Li batteries: progress and perspectives.
    Fan X; Wang C
    Chem Soc Rev; 2021 Sep; 50(18):10486-10566. PubMed ID: 34341815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppressing the Voltage Decay Based on a Distinct Stacking Sequence of Oxygen Atoms for Li-Rich Cathode Materials.
    Cao S; Wu C; Xie X; Li H; Zang Z; Li Z; Chen G; Guo X; Wang X
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17639-17648. PubMed ID: 33825459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Voltage, Highly Reversible Sodium Batteries Enabled by Fluorine-Rich Electrode/Electrolyte Interphases.
    Guo XF; Yang Z; Zhu YF; Liu XH; He XX; Li L; Qiao Y; Chou SL
    Small Methods; 2022 Jun; 6(6):e2200209. PubMed ID: 35466574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of vanadium-based polyanion positive electrode active materials for high-voltage sodium-based batteries.
    Shraer SD; Luchinin ND; Trussov IA; Aksyonov DA; Morozov AV; Ryazantsev SV; Iarchuk AR; Morozova PA; Nikitina VA; Stevenson KJ; Antipov EV; Abakumov AM; Fedotov SS
    Nat Commun; 2022 Jul; 13(1):4097. PubMed ID: 35835761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.