These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35611132)

  • 1. Air bubble removal: Wettability contrast enabled microfluidic interconnects.
    Zhao X; Ma C; Park DS; Soper SA; Murphy MC
    Sens Actuators B Chem; 2022 Jun; 361():. PubMed ID: 35611132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eliminating air bubble in microfluidic systems utilizing integrated in-line sloped microstructures.
    Huang C; Wippold JA; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Oct; 22(4):76. PubMed ID: 33090275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic gasketless interconnects sealed by superhydrophobic surfaces.
    Zhao X; Park DS; Soper SA; Murphy MC
    J Microelectromech Syst; 2020 Oct; 29(5):894-899. PubMed ID: 33746475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap.
    Sung JH; Shuler ML
    Biomed Microdevices; 2009 Aug; 11(4):731-8. PubMed ID: 19212816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bubbles no more: in-plane trapping and removal of bubbles in microfluidic devices.
    Lochovsky C; Yasotharan S; Günther A
    Lab Chip; 2012 Feb; 12(3):595-601. PubMed ID: 22159026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic bubble trap and oscillator.
    Stucki JD; Guenat OT
    Lab Chip; 2015 Dec; 15(23):4393-7. PubMed ID: 26500046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Penetration of a bubble through porous membranes with different wettabilities.
    Park J; Ryu J; Lee SJ
    Soft Matter; 2019 Jul; 15(29):5819-5826. PubMed ID: 31184354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bubble removal with the use of a vacuum pressure generated by a converging-diverging nozzle.
    Christoforidis T; Ng C; Eddington DT
    Biomed Microdevices; 2017 Sep; 19(3):58. PubMed ID: 28646280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How to Prevent Bubbles in Microfluidic Channels.
    He X; Wang B; Meng J; Zhang S; Wang S
    Langmuir; 2021 Feb; 37(6):2187-2194. PubMed ID: 33528259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Surface Wettability on Bubble Formation and Motion.
    Xia Y; Gao X; Li R
    Langmuir; 2021 Dec; 37(49):14483-14490. PubMed ID: 34851638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filtering microfluidic bubble trains at a symmetric junction.
    Parthiban P; Khan SA
    Lab Chip; 2012 Feb; 12(3):582-8. PubMed ID: 22051610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.
    Choi M; Na Y; Kim SJ
    Electrophoresis; 2015 Dec; 36(23):2896-901. PubMed ID: 26382942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraviolet-Driven Janus Foams with Wetting Gradients: Unidirectional Penetration Control for Underwater Bubbles.
    Dai X; Guo Z; Liu W
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42734-42743. PubMed ID: 36070967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Scalable, Modular Degasser for Passive In-Line Removal of Bubbles from Biomicrofluidic Devices.
    Musgrove HB; Saleheen A; Zatorski JM; Arneja A; Luckey CJ; Pompano RR
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Forces and Interaction Mechanisms of Emulsion Drops and Gas Bubbles in Complex Fluids.
    Xie L; Shi C; Cui X; Zeng H
    Langmuir; 2017 Apr; 33(16):3911-3925. PubMed ID: 28178417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wettability-Engineered Meshes for Gas Microvolume Precision Handling in Liquids.
    Bernardini J; Sen U; Jafari Gukeh M; Asinari P; Megaridis CM
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):18046-18055. PubMed ID: 32191833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oil-Grafted Track-Assisted Directional Transport of Water Droplets and Submerged Air Bubbles on Solid Surfaces.
    M A; Peethan A; George SD
    Langmuir; 2023 Feb; 39(5):1987-1996. PubMed ID: 36696539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements of Static and Dynamic Bubble Surface Tension Using a Deformation-Based Microfluidic Tensiometer.
    Liu S; Dutcher CS
    J Phys Chem B; 2021 Dec; 125(51):13916-13927. PubMed ID: 34919401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of Bacteria from Solids by Bubbles: Effect of Solid Wettability, Interaction Geometry, and Liquid-Vapor Interface Velocity.
    Kriegel AT; Ducker WA
    Langmuir; 2019 Oct; 35(39):12817-12830. PubMed ID: 31448615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.