These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 35611559)
1. Bioleaching of rare-earth elements from phosphate rock using Acidithiobacillus ferrooxidans. Tian Y; Hu X; Song X; Yang AJ Lett Appl Microbiol; 2022 Nov; 75(5):1111-1121. PubMed ID: 35611559 [TBL] [Abstract][Full Text] [Related]
2. Exploring the role of extracellular polymeric substances in the antimony leaching of tailings by Acidithiobacillus ferrooxidans. Song X; Yang A; Hu X; Niu AP; Cao Y; Zhang Q Environ Sci Pollut Res Int; 2023 Feb; 30(7):17695-17708. PubMed ID: 36203043 [TBL] [Abstract][Full Text] [Related]
3. Bioleaching of tellurium from mine tailings by indigenous Acidithiobacillus ferrooxidans. Zhan Y; Shen X; Chen M; Yang K; Xie H Lett Appl Microbiol; 2022 Nov; 75(5):1076-1083. PubMed ID: 34586632 [TBL] [Abstract][Full Text] [Related]
4. Bioleaching of vanadium by Acidithiobacillus ferrooxidans from vanadium-bearing resources: Performance and mechanisms. Li J; Zhang B; Yang M; Lin H J Hazard Mater; 2021 Aug; 416():125843. PubMed ID: 33865106 [TBL] [Abstract][Full Text] [Related]
5. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans. Makita M; Esperón M; Pereyra B; López A; Orrantia E BMC Biotechnol; 2004 Oct; 4():22. PubMed ID: 15482595 [TBL] [Abstract][Full Text] [Related]
6. Enhanced bioleaching of spent Li-ion batteries using A. ferrooxidans by application of external magnetic field. Kim J; Nwe HH; Yoon CS J Environ Manage; 2024 Sep; 367():122012. PubMed ID: 39094417 [TBL] [Abstract][Full Text] [Related]
7. Bioleaching performance of vanadium-bearing smelting ash by Acidithiobacillus ferrooxidans for vanadium recovery. Guo X; Chen S; Han Y; Hao C; Feng X; Zhang B J Environ Manage; 2023 Jun; 336():117615. PubMed ID: 36893541 [TBL] [Abstract][Full Text] [Related]
8. Catalytic effect of Ag⁺ on arsenic bioleaching from orpiment (As₂S₃) in batch tests with Acidithiobacillus ferrooxidans and Sulfobacillus sibiricus. Zhang G; Chao X; Guo P; Cao J; Yang C J Hazard Mater; 2015; 283():117-22. PubMed ID: 25265593 [TBL] [Abstract][Full Text] [Related]
9. Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans. Zhu J; Wang Q; Zhou S; Li Q; Gan M; Jiang H; Qin W; Liu X; Hu Y; Qiu G Colloids Surf B Biointerfaces; 2015 Feb; 126():351-7. PubMed ID: 25511439 [TBL] [Abstract][Full Text] [Related]
10. Bioleaching of cadmium and nickel from synthetic sediments by Acidithiobacillus ferrooxidans. Kim SD; Bae JE; Park HS; Cha DK Environ Geochem Health; 2005 Sep; 27(3):229-35. PubMed ID: 16059779 [TBL] [Abstract][Full Text] [Related]
11. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques. Fantauzzi M; Licheri C; Atzei D; Loi G; Elsener B; Rossi G; Rossi A Anal Bioanal Chem; 2011 Oct; 401(7):2237-48. PubMed ID: 21847529 [TBL] [Abstract][Full Text] [Related]
12. Acidophilic Iron- and Sulfur-Oxidizing Bacteria, Yi Q; Wu S; Southam G; Robertson L; You F; Liu Y; Wang S; Saha N; Webb R; Wykes J; Chan TS; Lu YR; Huang L Environ Sci Technol; 2021 Jun; 55(12):8020-8034. PubMed ID: 34043324 [TBL] [Abstract][Full Text] [Related]
13. Specific mechanism of Acidithiobacillus caldus extracellular polymeric substances in the bioleaching of copper-bearing sulfide ore. Feng S; Li K; Huang Z; Tong Y; Yang H PLoS One; 2019; 14(4):e0213945. PubMed ID: 30978195 [TBL] [Abstract][Full Text] [Related]
14. Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans. Chen S; Yang Y; Liu C; Dong F; Liu B Chemosphere; 2015 Dec; 141():162-8. PubMed ID: 26196406 [TBL] [Abstract][Full Text] [Related]
15. Bioleaching of iron from laterite soil using an isolated Acidithiobacillus ferrooxidans strain and application of leached laterite iron as Fenton's catalyst in selective herbicide degradation. S B; Manu B; M Y S PLoS One; 2021; 16(3):e0243444. PubMed ID: 33784303 [TBL] [Abstract][Full Text] [Related]
16. Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources. Fathollahzadeh H; Eksteen JJ; Kaksonen AH; Watkin ELJ Appl Microbiol Biotechnol; 2019 Feb; 103(3):1043-1057. PubMed ID: 30488284 [TBL] [Abstract][Full Text] [Related]
17. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Sand W; Gehrke T Res Microbiol; 2006; 157(1):49-56. PubMed ID: 16431087 [TBL] [Abstract][Full Text] [Related]
18. Analysis of differential-expressed proteins of Acidithiobacillus ferrooxidans grown under phosphate starvation. He Z; Zhong H; Hu Y; Xiao S; Liu J; Xu J; Li G J Biochem Mol Biol; 2005 Sep; 38(5):545-9. PubMed ID: 16202233 [TBL] [Abstract][Full Text] [Related]
19. Investigating the rus and petI operon expression patterns in exposed Acidithiobacillus ferrooxidans sp. FJ2 to different doses of gamma irradiation. Nasiri SS; Sarabi M; Fatemi F; Dini S Appl Radiat Isot; 2021 Nov; 177():109911. PubMed ID: 34481316 [TBL] [Abstract][Full Text] [Related]
20. Study on the role of microbial metabolites in in-situ noncontact bioleaching of ion-adsorption rare earth ore. Zhao Y; Zhao H; Shen L; Qiu G; Wang Y J Environ Manage; 2024 Sep; 368():122184. PubMed ID: 39128358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]