These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35611583)

  • 1. The hawkmoth wingbeat is not at resonance.
    Gau J; Wold ES; Lynch J; Gravish N; Sponberg S
    Biol Lett; 2022 May; 18(5):20220063. PubMed ID: 35611583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid frequency modulation in a resonant system: aerial perturbation recovery in hawkmoths.
    Gau J; Gemilere R; Fm Subteam LV; Lynch J; Gravish N; Sponberg S
    Proc Biol Sci; 2021 May; 288(1951):20210352. PubMed ID: 34034520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wing flexibility reduces the energetic requirements of insect flight.
    Reid HE; Schwab RK; Maxcer M; Peterson RKD; Johnson EL; Jankauski M
    Bioinspir Biomim; 2019 Jul; 14(5):056007. PubMed ID: 31252414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2999-3006. PubMed ID: 12878668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Moth resonant mechanics are tuned to wingbeat frequency and energetic demands.
    Wold ES; Aiello B; Harris M; Bin Sikandar U; Lynch J; Gravish N; Sponberg S
    Proc Biol Sci; 2024 Jun; 291(2025):20240317. PubMed ID: 38920055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect actuation reduces flight power requirements in
    Gau J; Gravish N; Sponberg S
    J R Soc Interface; 2019 Dec; 16(161):20190543. PubMed ID: 31847756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimensional analysis of spring-wing systems reveals performance metrics for resonant flapping-wing flight.
    Lynch J; Gau J; Sponberg S; Gravish N
    J R Soc Interface; 2021 Feb; 18(175):20200888. PubMed ID: 33593213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings.
    Eberle AL; Dickerson BH; Reinhall PG; Daniel TL
    J R Soc Interface; 2015 Mar; 12(104):20141088. PubMed ID: 25631565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Within-wingbeat damping: dynamics of continuous free-flight yaw turns in Manduca sexta.
    Hedrick TL; Robinson AK
    Biol Lett; 2010 Jun; 6(3):422-5. PubMed ID: 20181557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural damping renders the hawkmoth exoskeleton mechanically insensitive to non-sinusoidal deformations.
    Wold ES; Lynch J; Gravish N; Sponberg S
    J R Soc Interface; 2023 May; 20(202):20230141. PubMed ID: 37194272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hovering and forward flight of the hawkmoth Manduca sexta: trim search and 6-DOF dynamic stability characterization.
    Kim JK; Han JS; Lee JS; Han JH
    Bioinspir Biomim; 2015 Sep; 10(5):056012. PubMed ID: 26414442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetry costs: effects of wing damage on hovering flight performance in the hawkmoth
    Fernández MJ; Driver ME; Hedrick TL
    J Exp Biol; 2017 Oct; 220(Pt 20):3649-3656. PubMed ID: 28794226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hawkmoths regulate flight torques with their abdomen for yaw control.
    Le V; Cellini B; Schilder R; Mongeau JM
    J Exp Biol; 2023 May; 226(9):. PubMed ID: 36995279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flight motor modulation with speed in the hawkmoth Manduca sexta.
    Hedrick TL; Martínez-Blat J; Goodman MJ
    J Insect Physiol; 2017 Jan; 96():115-121. PubMed ID: 27983942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta).
    Cheng B; Deng X; Hedrick TL
    J Exp Biol; 2011 Dec; 214(Pt 24):4092-106. PubMed ID: 22116752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solving the thoracic inverse problem in the fruit fly.
    Pons A; Perl I; Ben-Dov O; Maya R; Beatus T
    Bioinspir Biomim; 2023 May; 18(4):. PubMed ID: 37042474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between wingbeat frequency and resonant frequency of the wing in insects.
    Ha NS; Truong QT; Goo NS; Park HC
    Bioinspir Biomim; 2013 Dec; 8(4):046008. PubMed ID: 24166827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An aerodynamic model for insect flapping wings in forward flight.
    Han JS; Chang JW; Han JH
    Bioinspir Biomim; 2017 Mar; 12(3):036004. PubMed ID: 28362636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematic compensation for wing loss in flying damselflies.
    Kassner Z; Dafni E; Ribak G
    J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.