These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35612001)

  • 21. Stacking Fault-Induced Minimized Lattice Thermal Conductivity in the High-Performance GeTe-Based Thermoelectric Materials upon Bi
    Li J; Xie Y; Zhang C; Ma K; Liu F; Ao W; Li Y; Zhang C
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20064-20072. PubMed ID: 31091077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultra-low lattice thermal conductivity and giant phonon-electric field coupling in hafnium dichalcogenide monolayers.
    Dimple ; Mohanta MK; Rawat A; Jena N; Ahammed R; De Sarkar A
    J Phys Condens Matter; 2020 May; 32(31):315301. PubMed ID: 32378516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Local Symmetry Breaking Suppresses Thermal Conductivity in Crystalline Solids.
    Dutta M; Prasad MVD; Pandey J; Soni A; Waghmare UV; Biswas K
    Angew Chem Int Ed Engl; 2022 Apr; 61(15):e202200071. PubMed ID: 35137508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultralow lattice thermal conductivity at room temperature in 2D KCuSe from first-principles calculations.
    Xu Z; Wang C; Wu X; Hu L; Liu Y; Gao G
    Phys Chem Chem Phys; 2022 Feb; 24(5):3296-3302. PubMed ID: 35050286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal Structure and Thermoelectric Properties of Novel Quaternary Cu
    Cherniushok O; Smitiukh OV; Tobola J; Knura R; Marchuk OV; Parashchuk T; Wojciechowski KT
    Chem Mater; 2022 Mar; 34(5):2146-2160. PubMed ID: 35281971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hidden structures: a driving factor to achieve low thermal conductivity and high thermoelectric performance.
    Sarkar D; Bhui A; Maria I; Dutta M; Biswas K
    Chem Soc Rev; 2024 Jun; 53(12):6100-6149. PubMed ID: 38717749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal transport by electrons and phonons in PdTe
    Li S; Zhang X; Bao H
    Phys Chem Chem Phys; 2021 Mar; 23(10):5956-5962. PubMed ID: 33666601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrinsically Ultralow Thermal Conductivity in Ruddlesden-Popper 2D Perovskite Cs
    Acharyya P; Ghosh T; Pal K; Kundu K; Singh Rana K; Pandey J; Soni A; Waghmare UV; Biswas K
    J Am Chem Soc; 2020 Sep; 142(36):15595-15603. PubMed ID: 32799442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lattice Dynamics and Thermal Transport in Semiconductors with Anti-Bonding Valence Bands.
    Yuan J; Chen Y; Liao B
    J Am Chem Soc; 2023 Aug; 145(33):18506-18515. PubMed ID: 37566730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential thermoelectric materials: first-principles prediction of low lattice thermal conductivity of two-dimensional (2D) orthogonal ScX
    Bi S; Sun Z; Yuan K; Chang Z; Zhang X; Gao Y; Tang D
    Phys Chem Chem Phys; 2021 Oct; 23(41):23718-23729. PubMed ID: 34642727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.
    Wu X; Lee J; Varshney V; Wohlwend JL; Roy AK; Luo T
    Sci Rep; 2016 Mar; 6():22504. PubMed ID: 26928396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical Bonding Tuned Lattice Anharmonicity Leads to a High Thermoelectric Performance in Cubic AgSnSbTe
    Sarkar D; Dolui K; Taneja V; Ahad A; Dutta M; Manjunatha SO; Swain D; Biswas K
    Angew Chem Int Ed Engl; 2023 Oct; 62(40):e202308515. PubMed ID: 37583094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Origin of Ultralow Thermal Conductivity in InTe: Lone-Pair-Induced Anharmonic Rattling.
    Jana MK; Pal K; Waghmare UV; Biswas K
    Angew Chem Int Ed Engl; 2016 Jun; 55(27):7792-6. PubMed ID: 26918541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intrinsically Low Thermal Conductivity and High Carrier Mobility in Dual Topological Quantum Material, n-Type BiTe.
    Samanta M; Pal K; Waghmare UV; Biswas K
    Angew Chem Int Ed Engl; 2020 Mar; 59(12):4822-4829. PubMed ID: 31970889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lone-Electron-Pair Micelles Strengthen Bond Anharmonicity in MnPb
    Dawahre L; Lu R; Djieutedjeu H; Lopez J; Bailey TP; Buchanan B; Yin Z; Uher C; Poudeu PFP
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44991-44997. PubMed ID: 32902948
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence of Highly Anharmonic Soft Lattice Vibrations in a Zintl Rattler.
    Dutta M; Samanta M; Ghosh T; Voneshen DJ; Biswas K
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):4259-4265. PubMed ID: 33140516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrinsic Rattler-Induced Low Thermal Conductivity in Zintl Type TlInTe
    Jana MK; Pal K; Warankar A; Mandal P; Waghmare UV; Biswas K
    J Am Chem Soc; 2017 Mar; 139(12):4350-4353. PubMed ID: 28263613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe.
    Lin W; He J; Su X; Zhang X; Xia Y; Bailey TP; Stoumpos CC; Tan G; Rettie AJE; Chung DY; Dravid VP; Uher C; Wolverton C; Kanatzidis MG
    Adv Mater; 2021 Nov; 33(44):e2104908. PubMed ID: 34523151
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel 2D material with intrinsically low thermal conductivity of Ga
    Zhai W; Li L; Zhao M; Hu Q; Li J; Yang G; Yan Y; Zhang C; Liu PF
    Phys Chem Chem Phys; 2022 Feb; 24(7):4613-4619. PubMed ID: 35132981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. First-Principles Study of Anharmonic Lattice Dynamics in Low Thermal Conductivity AgCrSe_{2}: Evidence for a Large Resonant Four-Phonon Scattering.
    Xie L; Feng JH; Li R; He JQ
    Phys Rev Lett; 2020 Dec; 125(24):245901. PubMed ID: 33412052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.