These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35612001)

  • 41. Structural and thermal properties of ultralow thermal conductivity Ba
    Ojo OP; Gunatilleke WDCB; Wang H; Nolas GS
    Dalton Trans; 2022 Apr; 51(16):6220-6225. PubMed ID: 35362507
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quaternary Chalcogenide Semiconductors with 2D Structures: Rb
    Zhao J; Hao S; Islam SM; Chen H; Ma S; Wolverton C; Kanatzidis MG
    Inorg Chem; 2018 Aug; 57(15):9403-9411. PubMed ID: 30009600
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultrahigh lattice thermal conductivity in topological semimetal TaN caused by a large acoustic-optical gap.
    Guo SD; Liu BG
    J Phys Condens Matter; 2018 Mar; 30(10):105701. PubMed ID: 29376833
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Resonant bonding leads to low lattice thermal conductivity.
    Lee S; Esfarjani K; Luo T; Zhou J; Tian Z; Chen G
    Nat Commun; 2014 Apr; 5():3525. PubMed ID: 24770354
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Origins of low lattice thermal conductivity of Pb
    Knura R; Parashchuk T; Yoshiasa A; Wojciechowski KT
    Dalton Trans; 2021 Mar; 50(12):4323-4334. PubMed ID: 33688875
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low lattice thermal conductivity of stanene.
    Peng B; Zhang H; Shao H; Xu Y; Zhang X; Zhu H
    Sci Rep; 2016 Feb; 6():20225. PubMed ID: 26838731
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultralow Lattice Thermal Conductivity at Room Temperature in Cu
    Koley B; Lakshan A; Raghuvanshi PR; Singh C; Bhattacharya A; Jana PP
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):9106-9113. PubMed ID: 33146447
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultralow and anisotropic thermal conductivity in semiconductor As
    González-Romero RL; Antonelli A; Chaves AS; Meléndez JJ
    Phys Chem Chem Phys; 2018 Jan; 20(3):1809-1816. PubMed ID: 29292419
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrahigh and anisotropic thermal transport in the hybridized monolayer (BC
    Shafique A; Shin YH
    Phys Chem Chem Phys; 2019 Aug; 21(31):17306-17313. PubMed ID: 31353375
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intrinsically low thermal conductivity in a p-type semiconductor SrOCuBiSe
    Luo M; Bu K; Zhang X; Huang J; Wang R; Huang F
    Chem Commun (Camb); 2020 Apr; 56(31):4356-4359. PubMed ID: 32193523
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Predicting the Lattice Thermal Conductivity in Nitride Perovskite LaWN
    Tong Z; Zhang Y; Pecchia A; Yam C; Zhou L; Dumitrică T; Frauenheim T
    Adv Sci (Weinh); 2023 Mar; 10(9):e2205934. PubMed ID: 36683244
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Diffusive nature of thermal transport in stanene.
    Nissimagoudar AS; Manjanath A; Singh AK
    Phys Chem Chem Phys; 2016 May; 18(21):14257-63. PubMed ID: 27169141
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cu
    Jiang Y; Jia F; Chen L; Wu LM
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36616-36625. PubMed ID: 31507161
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Significantly enhanced phonon mean free path and thermal conductivity by percolation of silver nanoflowers.
    Suh D; Lee S; Xu C; Jan AA; Baik S
    Phys Chem Chem Phys; 2019 Jan; 21(5):2453-2462. PubMed ID: 30652710
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quasi-one-dimensional thermal transport in trigonal selenium crystal.
    Peng H; Hou D; Chen G
    J Phys Condens Matter; 2021 Aug; 33(45):. PubMed ID: 34384051
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Soft phonon modes driven huge difference on lattice thermal conductivity between topological semimetal WC and WN.
    Guo SD; Chen P
    J Chem Phys; 2018 Apr; 148(14):144706. PubMed ID: 29655357
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Superhigh out-of-plane piezoelectricity, low thermal conductivity and photocatalytic abilities in ultrathin 2D van der Waals heterostructures of boron monophosphide and gallium nitride.
    Mohanta MK; Rawat A; Dimple ; Jena N; Ahammed R; De Sarkar A
    Nanoscale; 2019 Nov; 11(45):21880-21890. PubMed ID: 31697290
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of non-analytical corrections on the phononic thermal transport in InX (X = S, Se, Te) monolayers.
    Shafique A; Shin YH
    Sci Rep; 2020 Jan; 10(1):1093. PubMed ID: 31974441
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The first-principles and BTE investigation of phonon transport in 1T-TiSe
    Wang ZL; Chen G; Zhang X; Tang D
    Phys Chem Chem Phys; 2021 Jan; 23(2):1627-1638. PubMed ID: 33410842
    [TBL] [Abstract][Full Text] [Related]  

  • 60. External electric field driving the ultra-low thermal conductivity of silicene.
    Qin G; Qin Z; Yue SY; Yan QB; Hu M
    Nanoscale; 2017 Jun; 9(21):7227-7234. PubMed ID: 28513696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.