These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35612039)

  • 1. Prediction of Acute Kidney Injury in the Intensive Care Unit: Preliminary Findings in a European Open Access Database.
    Fujarski M; Porschen C; Plagwitz L; Brenner A; Ghoreishi N; Thoral P; de Grooth HJ; Elbers P; Weiss R; Meersch M; Zarbock A; von Groote TC; Varghese J
    Stud Health Technol Inform; 2022 May; 294():139-140. PubMed ID: 35612039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Severe acute kidney injury predicting model based on transcontinental databases: a single-centre prospective study.
    Liang Q; Xu Y; Zhou Y; Chen X; Chen J; Huang M
    BMJ Open; 2022 Mar; 12(3):e054092. PubMed ID: 35241466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Case mix, outcome and activity for patients with severe acute kidney injury during the first 24 hours after admission to an adult, general critical care unit: application of predictive models from a secondary analysis of the ICNARC Case Mix Programme database.
    Kolhe NV; Stevens PE; Crowe AV; Lipkin GW; Harrison DA
    Crit Care; 2008; 12 Suppl 1(Suppl 1):S2. PubMed ID: 19105800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomarker Predictors of Adverse Acute Kidney Injury Outcomes in Critically Ill Patients: The Dublin Acute Biomarker Group Evaluation Study.
    McMahon BA; Galligan M; Redahan L; Martin T; Meaney E; Cotter EJ; Murphy N; Hannon C; Doran P; Marsh B; Nichol A; Murray PT
    Am J Nephrol; 2019; 50(1):19-28. PubMed ID: 31203271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep-learning model to continuously predict severe acute kidney injury based on urine output changes in critically ill patients.
    Alfieri F; Ancona A; Tripepi G; Crosetto D; Randazzo V; Paviglianiti A; Pasero E; Vecchi L; Cauda V; Fagugli RM
    J Nephrol; 2021 Dec; 34(6):1875-1886. PubMed ID: 33900581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning model for predicting acute kidney injury progression in critically ill patients.
    Wei C; Zhang L; Feng Y; Ma A; Kang Y
    BMC Med Inform Decis Mak; 2022 Jan; 22(1):17. PubMed ID: 35045840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute kidney injury risk prediction score for critically-ill surgical patients.
    Trongtrakul K; Patumanond J; Kongsayreepong S; Morakul S; Pipanmekaporn T; Akaraborworn O; Poopipatpab S
    BMC Anesthesiol; 2020 Jun; 20(1):140. PubMed ID: 32493268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of clinically available renal biomarkers in critically ill adults: a prospective multicenter observational study.
    Deng Y; Chi R; Chen S; Ye H; Yuan J; Wang L; Zhai Y; Gao L; Zhang D; Hu L; Lv B; Long Y; Sun C; Yang X; Zou X; Chen C
    Crit Care; 2017 Mar; 21(1):46. PubMed ID: 28264714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning versus physicians' prediction of acute kidney injury in critically ill adults: a prospective evaluation of the AKIpredictor.
    Flechet M; Falini S; Bonetti C; Güiza F; Schetz M; Van den Berghe G; Meyfroidt G
    Crit Care; 2019 Aug; 23(1):282. PubMed ID: 31420056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A risk prediction score for acute kidney injury in the intensive care unit.
    Malhotra R; Kashani KB; Macedo E; Kim J; Bouchard J; Wynn S; Li G; Ohno-Machado L; Mehta R
    Nephrol Dial Transplant; 2017 May; 32(5):814-822. PubMed ID: 28402551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of chronic renal impairment and long-term mortality after de novo acute kidney injury in the critically ill; a Swedish multi-centre cohort study.
    Rimes-Stigare C; Frumento P; Bottai M; Mårtensson J; Martling CR; Walther SM; Karlström G; Bell M
    Crit Care; 2015 May; 19(1):221. PubMed ID: 25944032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AKI in low-risk versus high-risk patients in intensive care.
    Sileanu FE; Murugan R; Lucko N; Clermont G; Kane-Gill SL; Handler SM; Kellum JA
    Clin J Am Soc Nephrol; 2015 Feb; 10(2):187-96. PubMed ID: 25424992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model.
    Lin K; Hu Y; Kong G
    Int J Med Inform; 2019 May; 125():55-61. PubMed ID: 30914181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal cut points of plasma and urine neutrophil gelatinase-associated lipocalin for the prediction of acute kidney injury among critically ill adults: retrospective determination and clinical validation of a prospective multicentre study.
    Tecson KM; Erhardtsen E; Eriksen PM; Gaber AO; Germain M; Golestaneh L; Lavoria MLA; Moore LW; McCullough PA
    BMJ Open; 2017 Jul; 7(7):e016028. PubMed ID: 28698338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risk factors, clinical features and outcome of new-onset acute kidney injury among critically ill patients: a database analysis based on prospective cohort study.
    Jiang YJ; Xi XM; Jia HM; Zheng X; Wang MP; Li W; Li WX
    BMC Nephrol; 2021 Aug; 22(1):289. PubMed ID: 34433442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A worldwide multicentre evaluation of the influence of deterioration or improvement of acute kidney injury on clinical outcome in critically ill patients with and without sepsis at ICU admission: results from The Intensive Care Over Nations audit.
    Peters E; Antonelli M; Wittebole X; Nanchal R; François B; Sakr Y; Vincent JL; Pickkers P
    Crit Care; 2018 Aug; 22(1):188. PubMed ID: 30075798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk Prediction Models for Acute Kidney Injury in Critically Ill Patients: Opus in Progressu.
    Neyra JA; Leaf DE
    Nephron; 2018; 140(2):99-104. PubMed ID: 29852504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RIFLE-based data collection/management system applied to a prospective cohort multicenter Italian study on the epidemiology of acute kidney injury in the intensive care unit.
    Garzotto F; Piccinni P; Cruz D; Gramaticopolo S; Dal Santo M; Aneloni G; Kim JC; Rocco M; Alessandri E; Giunta F; Michetti V; Iannuzzi M; Belluomo Anello C; Brienza N; Carlini M; Pelaia P; Gabbanelli V; Ronco C;
    Blood Purif; 2011; 31(1-3):159-71. PubMed ID: 21228585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute kidney injury in critically ill patients with haematological malignancies: results of a multicentre cohort study from the Groupe de Recherche en Réanimation Respiratoire en Onco-Hématologie.
    Darmon M; Vincent F; Canet E; Mokart D; Pène F; Kouatchet A; Mayaux J; Nyunga M; Bruneel F; Rabbat A; Lebert C; Perez P; Renault A; Meert AP; Benoit D; Hamidfar R; Jourdain M; Schlemmer B; Chevret S; Lemiale V; Azoulay E
    Nephrol Dial Transplant; 2015 Dec; 30(12):2006-13. PubMed ID: 26597921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison Of Two Definitions (P-Rifle And Kdigo) For Prevalence Of Acute Kidney Injury And In Hospital Mortality In A Paediatric Intensive Care Unit Of Pakistan.
    Usman P; Qaisar H; Haque AU; Abbas Q
    J Ayub Med Coll Abbottabad; 2022; 34(1):112-117. PubMed ID: 35466638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.