These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 35612224)
1. Classification of Oncology Treatment Responses from French Radiology Reports with Supervised Machine Learning. Goldman JP; Mottin L; Zaghir J; Keszthelyi D; Lokaj B; Turbé H; Gobeil J; Ruch P; Ehrsam J; Lovis C Stud Health Technol Inform; 2022 May; 294():849-853. PubMed ID: 35612224 [TBL] [Abstract][Full Text] [Related]
2. Multilingual RECIST classification of radiology reports using supervised learning. Mottin L; Goldman JP; Jäggli C; Achermann R; Gobeill J; Knafou J; Ehrsam J; Wicky A; Gérard CL; Schwenk T; Charrier M; Tsantoulis P; Lovis C; Leichtle A; Kiessling MK; Michielin O; Pradervand S; Foufi V; Ruch P Front Digit Health; 2023; 5():1195017. PubMed ID: 37388252 [TBL] [Abstract][Full Text] [Related]
3. Automatic Annotation Tool to Support Supervised Machine Learning for Scaphoid Fracture Detection. Foufi V; Lanteri S; Gaudet-Blavignac C; Remy P; Montet X; Lovis C Stud Health Technol Inform; 2018; 255():210-214. PubMed ID: 30306938 [TBL] [Abstract][Full Text] [Related]
4. Machine learning based natural language processing of radiology reports in orthopaedic trauma. Olthof AW; Shouche P; Fennema EM; IJpma FFA; Koolstra RHC; Stirler VMA; van Ooijen PMA; Cornelissen LJ Comput Methods Programs Biomed; 2021 Sep; 208():106304. PubMed ID: 34333208 [TBL] [Abstract][Full Text] [Related]
5. Temporal bone radiology report classification using open source machine learning and natural langue processing libraries. Masino AJ; Grundmeier RW; Pennington JW; Germiller JA; Crenshaw EB BMC Med Inform Decis Mak; 2016 Jun; 16():65. PubMed ID: 27267768 [TBL] [Abstract][Full Text] [Related]
6. A Natural Language Processing and Machine Learning Approach to Identification of Incidental Radiology Findings in Trauma Patients Discharged from the Emergency Department. Evans CS; Dorris HD; Kane MT; Mervak B; Brice JH; Gray B; Moore C Ann Emerg Med; 2023 Mar; 81(3):262-269. PubMed ID: 36328850 [TBL] [Abstract][Full Text] [Related]
7. Natural language processing of radiology reports for the detection of thromboembolic diseases and clinically relevant incidental findings. Pham AD; Névéol A; Lavergne T; Yasunaga D; Clément O; Meyer G; Morello R; Burgun A BMC Bioinformatics; 2014 Aug; 15(1):266. PubMed ID: 25099227 [TBL] [Abstract][Full Text] [Related]
8. Natural Language Processing in Dutch Free Text Radiology Reports: Challenges in a Small Language Area Staging Pulmonary Oncology. Nobel JM; Puts S; Bakers FCH; Robben SGF; Dekker ALAJ J Digit Imaging; 2020 Aug; 33(4):1002-1008. PubMed ID: 32076924 [TBL] [Abstract][Full Text] [Related]
9. Inferring cancer disease response from radiology reports using large language models with data augmentation and prompting. Tan RSYC; Lin Q; Low GH; Lin R; Goh TC; Chang CCE; Lee FF; Chan WY; Tan WC; Tey HJ; Leong FL; Tan HQ; Nei WL; Chay WY; Tai DWM; Lai GGY; Cheng LT; Wong FY; Chua MCH; Chua MLK; Tan DSW; Thng CH; Tan IBH; Ng HT J Am Med Inform Assoc; 2023 Sep; 30(10):1657-1664. PubMed ID: 37451682 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Change and Significance for Clinical Findings in Radiology Reports Through Natural Language Processing. Hassanpour S; Bay G; Langlotz CP J Digit Imaging; 2017 Jun; 30(3):314-322. PubMed ID: 28050714 [TBL] [Abstract][Full Text] [Related]
11. Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing. Garg R; Oh E; Naidech A; Kording K; Prabhakaran S J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):2045-2051. PubMed ID: 31103549 [TBL] [Abstract][Full Text] [Related]
12. Automatic detection of actionable radiology reports using bidirectional encoder representations from transformers. Nakamura Y; Hanaoka S; Nomura Y; Nakao T; Miki S; Watadani T; Yoshikawa T; Hayashi N; Abe O BMC Med Inform Decis Mak; 2021 Sep; 21(1):262. PubMed ID: 34511100 [TBL] [Abstract][Full Text] [Related]
13. Identification of Long Bone Fractures in Radiology Reports Using Natural Language Processing to support Healthcare Quality Improvement. Grundmeier RW; Masino AJ; Casper TC; Dean JM; Bell J; Enriquez R; Deakyne S; Chamberlain JM; Alpern ER; Appl Clin Inform; 2016 Nov; 7(4):1051-1068. PubMed ID: 27826610 [TBL] [Abstract][Full Text] [Related]
14. Automatic Classification of Tumor Response From Radiology Reports With Rule-Based Natural Language Processing Integrated Into the Clinical Oncology Workflow. Laurent G; Craynest F; Thobois M; Hajjaji N JCO Clin Cancer Inform; 2023 Jan; 7():e2200139. PubMed ID: 36780606 [TBL] [Abstract][Full Text] [Related]
15. Performance of a Machine Learning Classifier of Knee MRI Reports in Two Large Academic Radiology Practices: A Tool to Estimate Diagnostic Yield. Hassanpour S; Langlotz CP; Amrhein TJ; Befera NT; Lungren MP AJR Am J Roentgenol; 2017 Apr; 208(4):750-753. PubMed ID: 28140627 [TBL] [Abstract][Full Text] [Related]
16. Natural Language-based Machine Learning Models for the Annotation of Clinical Radiology Reports. Zech J; Pain M; Titano J; Badgeley M; Schefflein J; Su A; Costa A; Bederson J; Lehar J; Oermann EK Radiology; 2018 May; 287(2):570-580. PubMed ID: 29381109 [TBL] [Abstract][Full Text] [Related]
17. Automated Detection of Radiology Reports that Require Follow-up Imaging Using Natural Language Processing Feature Engineering and Machine Learning Classification. Lou R; Lalevic D; Chambers C; Zafar HM; Cook TS J Digit Imaging; 2020 Feb; 33(1):131-136. PubMed ID: 31482317 [TBL] [Abstract][Full Text] [Related]
18. Performance of Machine Learning Methods to Classify French Medical Publications. Zaghir J; Goldman JP; Bjelogrlic M; Keszthelyi D; Gaudet-Blavignac C; Turbé H; Lokaj B; Lovis C Stud Health Technol Inform; 2022 May; 294():874-875. PubMed ID: 35612232 [TBL] [Abstract][Full Text] [Related]
19. Use of Machine Learning to Identify Follow-Up Recommendations in Radiology Reports. Carrodeguas E; Lacson R; Swanson W; Khorasani R J Am Coll Radiol; 2019 Mar; 16(3):336-343. PubMed ID: 30600162 [TBL] [Abstract][Full Text] [Related]
20. Natural Language Processing of Radiology Reports in Patients With Hepatocellular Carcinoma to Predict Radiology Resource Utilization. Brown AD; Kachura JR J Am Coll Radiol; 2019 Jun; 16(6):840-844. PubMed ID: 30833164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]