BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 35612293)

  • 1. Merits and advances of microfluidics in the pharmaceutical field: design technologies and future prospects.
    Maged A; Abdelbaset R; Mahmoud AA; Elkasabgy NA
    Drug Deliv; 2022 Dec; 29(1):1549-1570. PubMed ID: 35612293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles.
    Li X; Jiang X
    Adv Drug Deliv Rev; 2018 Mar; 128():101-114. PubMed ID: 29277543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems.
    Tomeh MA; Zhao X
    Mol Pharm; 2020 Dec; 17(12):4421-4434. PubMed ID: 33213144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidics in drug delivery: review of methods and applications.
    Rawas-Qalaji M; Cagliani R; Al-Hashimi N; Al-Dabbagh R; Al-Dabbagh A; Hussain Z
    Pharm Dev Technol; 2023 Jan; 28(1):61-77. PubMed ID: 36592376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Manufacturing of Multitargeted PLGA/PEG Nanoparticles for Delivery of Taxane Chemotherapeutics.
    Martins C; Sarmento B
    Methods Mol Biol; 2020; 2059():213-224. PubMed ID: 31435924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration.
    Lababidi N; Sigal V; Koenneke A; Schwarzkopf K; Manz A; Schneider M
    Beilstein J Nanotechnol; 2019; 10():2280-2293. PubMed ID: 31807413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems.
    Martins JP; Torrieri G; Santos HA
    Expert Opin Drug Deliv; 2018 May; 15(5):469-479. PubMed ID: 29508630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translating the fabrication of protein-loaded poly(lactic-co-glycolic acid) nanoparticles from bench to scale-independent production using microfluidics.
    Roces CB; Christensen D; Perrie Y
    Drug Deliv Transl Res; 2020 Jun; 10(3):582-593. PubMed ID: 31919746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidics: a transformational tool for nanomedicine development and production.
    Garg S; Heuck G; Ip S; Ramsay E
    J Drug Target; 2016 Nov; 24(9):821-835. PubMed ID: 27492254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine.
    Ejeta F
    Drug Des Devel Ther; 2021; 15():3881-3891. PubMed ID: 34531650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Nanoparticles for Drug Delivery.
    Liu Y; Yang G; Hui Y; Ranaweera S; Zhao CX
    Small; 2022 Sep; 18(36):e2106580. PubMed ID: 35396770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic-assisted preparation of PLGA nanoparticles for drug delivery purposes: experimental study and computational fluid dynamic simulation.
    Shokoohinia P; Hajialyani M; Sadrjavadi K; Akbari M; Rahimi M; Khaledian S; Fattahi A
    Res Pharm Sci; 2019 Oct; 14(5):459-470. PubMed ID: 31798663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic formulation of nanoparticles for biomedical applications.
    Shepherd SJ; Issadore D; Mitchell MJ
    Biomaterials; 2021 Jul; 274():120826. PubMed ID: 33965797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic platform for controlled synthesis of polymeric nanoparticles.
    Karnik R; Gu F; Basto P; Cannizzaro C; Dean L; Kyei-Manu W; Langer R; Farokhzad OC
    Nano Lett; 2008 Sep; 8(9):2906-12. PubMed ID: 18656990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of bulk and microfluidics methods for the formulation of poly-lactic-
    Streck S; Neumann H; Nielsen HM; Rades T; McDowell A
    Int J Pharm X; 2019 Dec; 1():100030. PubMed ID: 31517295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth.
    Hamdallah SI; Zoqlam R; Erfle P; Blyth M; Alkilany AM; Dietzel A; Qi S
    Int J Pharm; 2020 Jun; 584():119408. PubMed ID: 32407942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Use of an Efficient Microfluidic Mixing System for Generating Stabilized Polymeric Nanoparticles for Controlled Drug Release.
    Morikawa Y; Tagami T; Hoshikawa A; Ozeki T
    Biol Pharm Bull; 2018; 41(6):899-907. PubMed ID: 29863078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles.
    Tao J; Chow SF; Zheng Y
    Acta Pharm Sin B; 2019 Jan; 9(1):4-18. PubMed ID: 30766774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the design of microfluidic technologies for the manufacture of drug releasing particles.
    Forigua A; Kirsch RL; Willerth SM; Elvira KS
    J Control Release; 2021 May; 333():258-268. PubMed ID: 33766691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic synthesis of lipid-based nanoparticles for drug delivery: recent advances and opportunities.
    Mehraji S; DeVoe DL
    Lab Chip; 2024 Feb; 24(5):1154-1174. PubMed ID: 38165786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.